DOI QR코드

DOI QR Code

연속호우사상기반의 댐 붕괴 시나리오에 따른 최적대피소 선정에 관한 연구

A Study on Selection of Optimal Shelters according to Dam Break Scenario Based on Continuous Rainfall Event

  • 투고 : 2023.06.09
  • 심사 : 2023.07.01
  • 발행 : 2023.08.01

초록

이상기후와 댐 시설의 노후화로 인해 댐에 대한 위험관리 요구가 증대되고 있다. 하지만 저수지·댐 등의 붕괴에 따른 비상대처계획에서는 단일호우사상에 의해 댐 붕괴가 발생한 경우만을 다루고 있다. 이에 본 연구에서는 연속호우사상으로 인한 댐 하류부의 피해 발생 상황을 모의하고, 각각의 상황에 대한 최적 대피소를 선정하여 저수지·댐 등의 붕괴에 따른 비상대처계획 수립 방안을 제시하였다. 충주댐 유역을 대상으로 500년 빈도의 확률강우량이 연속적으로 발생하는 거대강우 시나리오를 정의하고, 이로 인해서 발생하는 거대홍수량을 산정하였다. 거대강우 시나리오가 충주댐에 발생하였을 때 무피해방류량 이상의 방류로 인해서 하류부에 침수피해가 발생하는 경우 (시나리오 A)와 댐 붕괴가 발생하는 경우 (시나리오 B)로 나누어 하류부에 발생하는 피해를 분석하였다. 2개의 시나리오에 따른 침수피해를 분석한 결과, 시나리오 A에서의 침수면적은 50.06 km2이며, 시나리오 B에서의 침수면적은 약 6.1배 큰 307.45 km2로 나타났다. 침수피해가 발생한 하류부 지역 중 시가화 지역의 비율이 높은 충주시를 대상으로 행정구역별 최적 대피소를 선정하였다. 국내·외 대피소 선정기준들을 이용하여 7가지 대피소 평가지표들을 설정하였으며, 계층화(Analytic Hierarchy Process, AHP) 기법을 활용하여 대피소 대안들을 평가하였다. 각 시나리오별로 최적 대피소를 선정한 결과, 선정된 6개의 최적 대피소 중에서 5곳이 학교로 선정되었다. 본 연구에서는 기존의 비상대처계획에서 고려되지 않았던 연속호우 사상에 의한 상황을 추가적으로 고려하였으며, 본 연구의 결과는 추후 비상대처계획 수립 시 참고 자료로 활용될 수 있을 것이라고 판단된다.

There is a growing demand for the stability of existing dams due to abnormal climate and the aging of dams. Emergency Action Plans (EAPs) for reservoir or dam failure only consider a single rainfall event. Therefore, this study simulates dam failure caused by continuous rainfall events, and proposes the establishment of EAP by selecting the optimal shelters. We define a mega rainfall event scenario caused by continuous rainfall events with 500-year frequency in the Chungju Dam watershed and estimate the mega flood. The mega flood event scenario is divided into two cases: scenario A represents the flooding case caused by discharge release from a dam, while scenario B is the case of a dam break. As a result of flood inundation analysis, the flooded damage area by the scenario A is 50.06 km2 and the area by the scenario B is 6.1 times of scenario A (307.45 km2). We select optimal shelters for each administrative region in the city of Chungju, which has the highest inundation rate in the urban area. Seven shelter evaluation indicators from domestic and foreign shelter selection criteria are chosen, and Analytical Hierarchy Process (AHP) method is used to evaluate the alternatives. As a result of the optimal shelter selection, the six shelters are selected and five are schools. This study considers continuous rainfall events for inundation analysis and selection of optimal shelters. Also, the results of this study could be used as a reference for establishment of the EAP.

키워드

과제정보

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C2091773).

참고문헌

  1. Alam, M. J., Habib, M. A. and Pothier, E. (2021). "Shelter locations in evacuation: A Multiple Criteria Evaluation combined with flood risk and traffic microsimulation modeling." International Journal of Disaster Risk Reduction, Elsevier, Vol. 53, 102016, https://doi.org/10.1016/j.ijdrr.2020.102016. 
  2. American Red Cross (ARC). (2002). Standards for Hurricane Evacuation Shelter Selection, ARC, Washington, D.C., United States. 
  3. Azzez, O., Elfeki, A., Kamis, A. S. and Chaabani, A. (2020). "Dam break analysis and flood disaster simulation in arid urban environment: The Um Al-Khair dam case study, Jeddah, Saudi Arabia." Natural Hazards, Springer, Vol. 100, pp. 995-1011, https://doi.org/10.1007/s11069-019-03836-5. 
  4. Bae, D. H., Heo, J. H. and Ahn, J. H. (2019). Guidelines for estimating flood discharge, Ministry of Environment, Sejoing-si (in Korean). 
  5. Bathurst, J. C. and Ashiq, M. (1998). "Dambreak flood impact on mountain stream bedload transport after 13 years." Earth Surface Processes and Landforms, Wiley, Vol. 23, No. 7, pp. 643-649, https://doi.org/10.1002/(SICI)1096-9837(199807)23:7<643::AID-ESP889>3.0.CO;2-3. 
  6. Bedient, P. B. and Huber, W. C. (1998). Hydrology and floodplain analysis, Addison-Wesley, Reading, Mass. 
  7. Bilali, A. E., Taleb, I., Nafii, A. and Taleb, A. (2022). "A practical probabilistic approach for simulating life loss in an urban area associated with a dam-break flood." International Journal of Disaster Risk Reduction, Elsevier, Vol. 76, 103011, https://doi.org/10.1016/j.ijdrr.2022.103011. 
  8. Bozkus, Z. and Kasap, A. (1998). "Comparison of physical and numerical dam-break simulations." Turkish Journal of Engineering and Environmental Sciences, Vol. 22, No. 5, pp. 429-444. 
  9. Chang, J. K. and Kim, S. G. (2014). "Proper location of disaster shelters according to evacuation time-focused on coastal areas in Hongseong Gun." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 14, No. 1, pp. 319-326, https://doi.org/10.9798/KOSHAM.2014.14.1.319 (in Korean). 
  10. Cho, K. T., Kim, S. J., Kim, D. S., Cho, Y. W. and Lee, J. I. (2003). "Priority setting for future core technologies using the AHP - with major fields in rural development and resources." Journal of Korean Society of Rural Planning, KSRP, Vol. 9, No. 3, pp. 41-46 (in Korean). 
  11. Choi, J. H., Kang, I. J. and King, S. S. (2012). "Study on the selection of the tsunami shelter using AHP and GIS analysis." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, KSGPC, Vol. 30, No. 6-1, pp. 503-509, https://doi.org/10.7848/ksgpc.2012.30.6-1.503 (in Korean). 
  12. Choi, B. H., Kim, I. H., Hong, J. J., Jeong, E. J. and Won, D. H. (2019). "Emergency Shelters site selection for the operation of reservoir emergency action plan - selection of evacuation site according to elderly population movement condition in rural area." Journal of Korean Society for Geospatial Information Science, KSGIS, Vol. 27, No. 3, pp. 3-13, https://doi.org/10.7319/kogsis.2019.27.3.003 (in Korean). 
  13. Day, C. A. (2016). "Modeling potential impacts of a breach for a high hazard dam, Elizabethtowm, Kenturcky, USA." Applied Geography, Elsevier, Vol. 71, pp. 1-8, https://doi.org/10.1016/j.apgeog.2016.04.002. 
  14. Disaster Relief Division (2021). 2022 Guidelines for Establishing Disaster Relief Plans, Ministry of the Interior and Safety, Sejoing-si (in Korean). 
  15. Fagherazzi, S., Rasetarinera, P., Hussaini, M. Y. and Furbish, D. J. (2004). "Numerical solution of the dam-break problem with a discontinuous galerkin method." Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 6, pp. 532-539, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:6(532). 
  16. Fread, D. L. (1984). A breach erosion model for earthen dams. National Weather Service (NWS) Report, NOAA, Silver Spring, Maryland. 
  17. Fread, D. L. (1988). The NWS DAMBRK model: Theoretical background/user documentation. Hydrologic Research Laboratory, National Weather Service, NOAA. 
  18. Han, D. (2019). Economic Impacts of Flood Disaster by Climate Change on Industry and Selection of Structure Measures for Flood Prevention in the Basin Using Economic Analysis, Ph.D. Dissertation, INHA University, Incheon, South Korea (in Korean). 
  19. Han, K. Y., Lee, J. Y., Lee, E. R. and Song, J. W. (1998). "Applicability evaluations of dam breach flood wave models." Journal of Korea Water Resources Association, KWRA, Vol. 31, No. 2, pp. 189-198 (in Korean). 
  20. HM Government. (2014). Evacuation and Shelter guidance, HM Government, London, United Kingdom. 
  21. Joo, J. G., Lee, J., Jo, D. J., Jun, H. D. and Kim, J. H. (2007). "Development of rainfall time distribution model for urban watersheds." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 8, pp. 655-663 (in Korean).  https://doi.org/10.3741/JKWRA.2007.40.8.655
  22. Jeong, J. H. (2006). A development of practical method for flood estimation, Ph.D dissertation, Korea University, Seoul, South Korea (in Korean). 
  23. Kim, D. (2018). Development of Consecutive Storm Event Based Rainfall-Runoff model for Short Term Flood Runoff Simulation and Applicability of the Model under Climate Change, Ph.D. Dissertation, INHA University, Incheon, South Korea (in Korean). 
  24. Kim, Y. (2022). Statistical Yearbook of 2021 Construction- Infrastructure Safety, Korea Authority of Land and Infrastructure Safety Publication. No. MA-22-E6-001, Korea Authority of Land and Infrastructure Safety, Jinju, Gyeongsangnam-do (in Korean). 
  25. Kim, N., Joo, J., Kim, M. and Park, K. (2020a). "Development of a Multi-Criteria Evaluation Framework and Its Application for Earthquake Shelter Selection." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 20, No. 2, pp. 197-205. https://doi.org/10.9798/KOSHAM.2020.20.2.197 (in Korean). 
  26. Kim, H. S., Kim, D., Han, D. and Kim, K. (2020b). Development and application of consecutive storm event based rainfall-runoff model for mega flood analysis, CCAW-TR-11, ISBN 979-11- 91160-01-7, Climate Change Adaptation for Water Resources. https://doi.org/10.979.1191160/017 (in Korean). 
  27. Kim, N., Won, Y. S., Lee, J. E., So, H. R., Yu, Y. S., Shin, H. S., Cha, H. S., Chun, B. S., Seo, G. D. and Jung, M. S. (2004). Report of National PMP Map, Korea, Ministry of Land, Infrastructure and Transport, Sejong-si, South Korea (in Korean). 
  28. Korea Meteorological Administration. (2023). 2022 Abonormal Weather report, Korea Meteorological Administration Publication. No. 11-136000-001109-10, Korea Meteorological Administration, Daejon (in Korean). 
  29. Kwon, O. I. and Shim, M. P. (1997). "A study on release determination scheme for a forecasted flood." Journal of Korea Water Resources Association, KWRA, Vol. 30, No. 3, pp. 257-268 (in Korean). 
  30. Kwon, J., Yoon, D. and Koh, J. (2015). "Analysis of Shelters acceptable range according to evacuation speed during flood disaster by severe rain storm." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 15, No. 3, pp. 115-123, https://doi.org/10.9798/KOSHAM.2015.15.3.115 (in Korean). 
  31. LaRocque, L. A., Imran, J. and Chaudhry, M. H. (2013). "Experimental and numerical investigations of two-dimensional dam-break flows." Journal of Hydraulic Engineering, Vol. 139, No. 6, pp. 569-579, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000705. 
  32. Lee, J. and Chung, G. (2017). "Estimation of interevent time definition using in urban areas." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 17, No. 4, pp. 287-294, https://doi.org/10.9798/KOSHAM.2017.17.4.287 (in Korean). 
  33. Lee, O., Jo, D. J. and Kim, S. (2017). "Future PMP estimation of Chungjudam watershed under KMA climate change scenarios." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 17, No. 1, pp. 365-373, https://doi.org/10.9798/KOSHAM.2017.17.1.365 (in Korean). 
  34. Lee, S., Kim, D. and Joo, H. (2022). "Optimal location identification for emergency evacuation shelters using the voronoi diagram." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 22, No. 1, pp. 209-217, https://doi.org/10.9798/KOSHAM.2022.22.1.209 (in Korean). 
  35. Li, Y., Bao, T., Gong, J., Shou, X. and Jang, K. (2020). "The prediction of dam displacement time series using STL, extra trees, and stacked LSTM neural network." IEEE Access, IEEE, No. 8, pp. 9440-94452, https://doi.org/10.1109/ACCESS.2020.2995592. 
  36. Lodhi, M. S. and Agrawal, D. K. (2012). "Dam-break flood simulation under various likely scenarios and mapping using GIS: Case of a proposed dam on River Yamuna, India." Journa of Mountain Science, Springer, Vol. 9, No. 2, pp. 214-220, https://doi.org/10.1007/s11629-012-2148-5. 
  37. Ma, Y., Xu, W., Qin, L. and Zhao, X. (2019). "Site selection models in natural disaster shelters: a review." Sustainability, MDPI, Vol. 11, No. 2, 399, https://doi.org/10.3390/su11020399. 
  38. MacDonald, T. C. and Langridge-Monopolis, J. (1984). "Breaching characteristics of dam failures." Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 5, pp. 567-586, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567). 
  39. Mahmoud, M. R., Fahmy, H. and Garcia, L. A. (2022). "Potential impact of failure of the Grand Ethiopian Renaissance Dam on downstream countries." Journal of Flood Risk Management, Wiley, Vol. 15, No. 2, e12793, https://doi.org/10.1111/jfr3.12793. 
  40. Marssoli, R. and Wu, W. (2014). "3-D finite-volume model of dam-break flow over uneven beds based on VOF method". Advances in Water Resources, Elsevier, Vol. 70, pp. 104-117, https://doi.org/10.1016/j.advwatres.2014.04.020. 
  41. Ministry of the Interior and Safety. (2017). Guidelines on the criteria for disaster map, Ministry of Interior and Safety Publication No. 2017-1, Ministry of Interior and Safety, Sejong-si, South Korea (in Korean). 
  42. Munoz, D. H. and Constantinescu, G. (2020). "3-D dam break flow simulations in simplified and complex domains." Advances in Water Resources, Elseiver, No. 137, 103510, https://doi.org/ 10.1016/j.advwatres.2020.103510. 
  43. Nappi, M. M. L., Nappi, V. and Souza, J. C. (2019). "Multi-criteria decision model for the selection and location of temporary shelters in disaster management." Journal of International Humanitarian Action, Springer, Vol. 4, No. 1, pp. 1-19, https://doi.org/10.1186/s41018-019-0061-z. 
  44. Nappi, M. M. L. and Souza, J. C. (2015). "Disaster management hierarchical structuring criteria for selection and location of temporary shelters." Natural Hazard, Springer, Vol. 75, pp. 2421-2436, https://doi.org/10.1007/s11069-014-1437-4. 
  45. Paquier, A. and Robin, O. (1997). "CASTOR: Simplified dam-break wave model." Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 8, pp. 724-727, https://doi.org/10.1061/(ASCE)0733-9429(1997)123:8(724). 
  46. Reed, S. and Halgre, J. (2011). "Validation of a new GIS tool to rapidly develop simplified dam break models." Dam Safety 2011, Washington, DC, USA. 
  47. Sakai, A. and Lukner, K. (2013). "Japan's Cris Management and growing Complexity: In Search of New Approaches." Japanese Journal of Political Science, Cambridfe university press, Vol. 14, No. 2, pp. 155-176, https://doi.org/10.1017/S1468109913000017. 
  48. Sanyal, J. and Lu, X. X. (2009). "Ideal location for flood shelter: a geographic information system approach." Journal of Flood Risk Management, Wiley, Vol. 2, No. 4, pp. 262-271, https://doi.org/10.1111/j.1753-318X.2009.01043.x. 
  49. Satty, R. W. (1987). "The analytic hierarchy process-what it is and how it is used." Mathematical Modelling, Vol. 9, No. 3-5, pp. 161-176.  https://doi.org/10.1016/0270-0255(87)90473-8
  50. Senik, B. and Uzun, O. (2021). "An assessment on size and site selection of emergency assembly points and temporary shelters area in Duzce." Natural Hazards, Springer, Vol. 105, pp. 1587-1602, https://doi.org/10.1007/s11069-020-04367-0. 
  51. Shahraki, A., Zadbar, A., Motevalli, M. and Aghajami, F. (2012) "Modeling of Earth Dam Break with SMPDBK Case Study: Bidekan Earth Dam." World Applied Science Journal, IDOSI, Vol. 19, No. 3, pp. 376-386, https://doi.org/10.5829/idosi.wasj.2012. 19.03.1070. 
  52. Shakibaeinia, A. and Yee, C. J. (2011). "A mesh-free particle model for simulation of mobile-bed dam break." Advances in Water Resources, Elsevier, Vol. 34, No. 6, pp. 794-807, https://doi.org/10.1016/j.advwatres.2011.04.011. 
  53. Soleymani, S., Golkar, H., Yazd, H. and Tavousi, M. (2015). "Numerical modeling dam failure phenomenon using software and finite difference method." Journal of Materials and Environmental Science, JMES, Vol. 6, No. 11, pp. 3143-3158. 
  54. Song, S., Zhou, H. and Song, W. (2019). "Sustainable shelter-site selection under uncertainty: A rough QUALIFLEX method." Computers and Industrial Engineering, Elsevier, Vol. 128, pp. 371-386, https://doi.org/10.1016/j.cie.2018.12.053. 
  55. Tokyo Metropolitan Government. (2013). Guidelines for Shelter Management Operations, Tokyo Metropolitan Government, Tokyo, Japan (in Japan). 
  56. Trivedi, A. (2018). "A multi-criteria decision approach based on DEMATEL to assess determinants of shelter site selection in disaster response." International Journal of Disaster Risk Reduction, Elsevier, Vol. 31, pp. 722-728, https://doi.org/10.1016/j.ijdrr.2018.07.019. 
  57. Weame, S. H. (2007). "Managing recovery after widespread damage." Proceedings of the Institution of Civil Engineers- Municipal Engineer, ICE, Vol. 160, No. 4, pp. 209-212, https://doi.org/10.1680/muen.2007.160.4.209. 
  58. Wetmore, J. N. and Fread, D. L. (1981). The NWS simplified dam-break flood forecasting model. National Weather Service, Silver Spring, Maryland, pp. 164-197. 
  59. Wonju Regional Environment Office (2004). River Master Plan for Downstream zone of Chungjum Dam: Environmental Impact Assessment report (in Korean). 
  60. Yoon, C., Oh, K., Kim, W. and Yang, D. (2016). "Priority ranking and design for development of coastal disaster management system functions using AHP method." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 16, No. 2, pp. 149-159, https://doi.org/10.9798/KOSHAM.2016.16.2.149 (in Korean). 
  61. Zhou, R. D., Judge, D. G. and Donnelly, C. R. (2004). "Comparison of HEC-RAS with FLDWAV and DAMBRK models for dam break analysis." Proceedings of Canadian Dam Association 2005 Annual Conference, Calgary, Alberta, Canada, pp. 1-13, https://doi.org/10.13140/2.1.2688.1606.