DOI QR코드

DOI QR Code

Bulb of Lilium longiflorum Thunb Extract Fermented with Lactobacillus acidophilus Reduces Inflammation in a Chronic Obstructive Pulmonary Disease Model

  • Ji-Eun Eom (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Gun-Dong Kim (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Young In Kim (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Kyung min Lim (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Ju Hye Song (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Yiseul Kim (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Hyeon-Ji Song (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Dong-Uk Shin (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Eun Yeong Lim (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Ha-Jung Kim (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Sung Hoon Kim (BOTANOS) ;
  • Deuk Sik Lee (WellbeingLS) ;
  • So-Young Lee (Food Functionality Research Division, Korea Food Research Institute (KFRI)) ;
  • Hee Soon Shin (Food Functionality Research Division, Korea Food Research Institute (KFRI))
  • Received : 2023.01.13
  • Accepted : 2023.01.27
  • Published : 2023.05.28

Abstract

Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is caused by repeated exposure to harmful matter, such as cigarette smoke. Although Lilium longiflorum Thunb (LLT) has anti-inflammatory effects, there is no report on the fermented LLT bulb extract regulating lung inflammation in COPD. Thus, we investigated the protective effect of LLT bulb extract fermented with Lactobacillus acidophilus 803 in COPD mouse models induced by cigarette smoke extract (CSE) and porcine pancreas elastase (PPE). Oral administration of the fermented product (LS803) suppressed the production of inflammatory mediators and the infiltration of immune cells involving neutrophils and macrophages, resulting in protective effects against lung damage. In addition, LS803 inhibited CSE- and LPS-induced IL-6 and IL-8 production in airway epithelial H292 cells as well as suppressed PMA-induced formation of neutrophil extracellular traps in HL-60 cells. In particular, LS803 significantly repressed the elevated IL-6 and MIP-2 production after CSE and LPS stimulation by suppressing the activity of the nuclear factor kappa-light-chain-enhancer of activated B (NFκB) in mouse peritoneal macrophages. Therefore, our results suggest that the fermented product LS803 is effective in preventing and alleviating lung inflammation.

Keywords

Acknowledgement

This research was financially supported by the Ministry of SMEs and Startups (MSS), Korea, under the "Regional Specialized Industry Development Program (R&D, S3074997)" supervised by the Korea Technology and Information Promotion Agency for SMEs (TIPA), and was supported by the Main Research Program (E0210202-02) of the Korea Food Research Institute (KFRI) funded by the Ministry of Science and ICT.

References

  1. Rabe KF, Watz H. 2017. Chronic obstructive pulmonary disease. Lancet 389: 1931-1940.  https://doi.org/10.1016/S0140-6736(17)31222-9
  2. Buist AS, McBurnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. BOLD Collaborative Research Group. 2007. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet 370: 741-750.  https://doi.org/10.1016/S0140-6736(07)61377-4
  3. Salvi SS, Barnes PJ. 2009. Chronic obstructive pulmonary disease in non-smokers. Lancet 374: 733-743.  https://doi.org/10.1016/S0140-6736(09)61303-9
  4. Bracke KR, D'hulst AI, Maes T, Moerloose KB, Demedts IK, Lebecque S, et al. 2006. Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J. Immunol. 177: 4350-4359.  https://doi.org/10.4049/jimmunol.177.7.4350
  5. Barnes PJ. 2016. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 138: 16-27.  https://doi.org/10.1016/j.jaci.2016.05.011
  6. Barnes PJ. 2004. Alveolar macrophages as orchestrators of COPD. COPD 1: 59-70.  https://doi.org/10.1081/COPD-120028701
  7. Rinaldi M, Maes K, De Vleeschauwer S, Thomas D, Verbeken EK, Decramer M, et al. 2012. Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis. Model Mech. 5: 333-341.  https://doi.org/10.1242/dmm.008508
  8. Barnes PJ, Shapiro SD, Pauwels RA. 2003. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur. Respir. J. 22: 672-688.  https://doi.org/10.1183/09031936.03.00040703
  9. Foronjy R, D'Armiento J. 2001. The role of collagenase in emphysema. Respir. Res. 2: 348-352.  https://doi.org/10.1186/rr85
  10. Papi A, Luppi F, Franco F, Fabbri LM. 2006. Pathophysiology of exacerbations of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 3: 245-251.  https://doi.org/10.1513/pats.200512-125SF
  11. Fernandez-Real JM, Broch M, Vendrell J, Ricart W. 2003. Smoking, fat mass and activation of the tumor necrosis factor-alpha pathway. Int. J. Obes. Relat. Metab. Disord. 27: 1552-1556.  https://doi.org/10.1038/sj.ijo.0802472
  12. Herold S, Mayer K, Lohmeyer J. 2011. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front. Immunol. 2: 65. 
  13. Tetley TD. 2002. Macrophages and the pathogenesis of COPD. Chest 121(5 Suppl): 156S-159S.  https://doi.org/10.1378/chest.121.5_suppl.156S
  14. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532-1535.  https://doi.org/10.1126/science.1092385
  15. Deshmukh HS, McLachlan A, Atkinson JJ, Hardie WD, Korfhagen TR, Dietsch M, et al. 2009. Matrix metalloproteinase-14 mediates a phenotypic shift in the airways to increase mucin production. Am. J. Respir. Crit. Care Med. 180: 834-845.  https://doi.org/10.1164/rccm.200903-0328OC
  16. Munafo JP Jr, Ramanathan A, Jimenez LS, Gianfagna TJ. 2010. Isolation and structural determination of steroidal glycosides from the bulbs of easter lily (Lilium longiflorum Thunb.). J. Agric. Food Chem. 58: 8806-8813.  https://doi.org/10.1021/jf101410d
  17. Kwon OK, Lee MY, Yuk JE, Oh SR, Chin YW, Lee HK, et al. 2010. Anti-inflammatory effects of methanol extracts of the root of Lilium lancifolium on LPS-stimulated Raw264.7 cells. J. Ethnopharmacol. 130: 28-34.  https://doi.org/10.1016/j.jep.2010.04.002
  18. Ma T, Wang Z, Zhang YM, Luo JG, Kong LY. 2017. Bioassay-guided isolation of anti-inflammatory components from the bulbs of Lilium brownii var. viridulum and identifying the underlying mechanism through acting on the NF-κB/MAPKs pathway. Molecules 22: 506. 
  19. Jin L, Zhang Y, Yan L, Guo Y, Niu L. 2012. Phenolic compounds and antioxidant activity of bulb extracts of six lilium species native to China. Molecules 17: 9361-9378.  https://doi.org/10.3390/molecules17089361
  20. Zhijie Z. 2007. Pharmacodynamics research of Lilium brownii polysaccharide. Traditional Chinese Drug Research and Clinical Pharmacology. 
  21. Luo J, Li L, Kong L. 2012. Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chem. 131: 1056-1062.  https://doi.org/10.1016/j.foodchem.2011.09.112
  22. Munafo JP Jr, Gianfagna TJ. 2015. Quantitative analysis of phenylpropanoid glycerol glucosides in different organs of easter lily (Lilium longiflorum Thunb.). J. Agric. Food Chem. 63: 4836-4842.  https://doi.org/10.1021/acs.jafc.5b00893
  23. Lee E, Yun N, Jang YP, Kim J. 2013. Lilium lancifolium Thunb. extract attenuates pulmonary inflammation and air space enlargement in a cigarette smoke-exposed mouse model. J. Ethnopharmacol. 149: 148-156.  https://doi.org/10.1016/j.jep.2013.06.014
  24. Jung SY, Kim GD, Choi DW, Shin DU, Eom JE, Kim SY, et al. 2021. Epilobiumpyrricholophum extract suppresses porcine pancreatic elastase and cigarette smoke extract-induced inflammatory response in a chronic obstructive pulmonary disease model. Foods 10: 2929. 
  25. Shin DU, Eom JE, Song HJ, Jung SY, Nguyen TV, Lim KM, et al.. 2022. Camellia sinensis L. alleviates pulmonary inflammation induced by porcine pancreas elastase and cigarette smoke extract. Antioxidants (Basel) 11: 1683. 
  26. Kim SY, Shin DU, Eom JE, Jung SY, Song HJ, Lim KM, et al. 2022. Artemisia gmelinii attenuates lung inflammation by suppressing the NF-κB/MAPK pathway. Antioxidants (Basel) 11: 568. 
  27. Christenson SA, Smith BM, Bafadhel M, Putcha N. 2022. Chronic obstructive pulmonary disease. Lancet 399: 2227-2242.  https://doi.org/10.1016/S0140-6736(22)00470-6
  28. Huls A, Schikowski T. 2017. Ambient particulate matter and COPD in China: a challenge for respiratory health research. Thorax. 72: 771-772.  https://doi.org/10.1136/thoraxjnl-2016-209687
  29. Savale L, Chaouat A, Bastuji-Garin S, Marcos E, Boyer L, Maitre B, et al. 2009. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 179: 566-571.  https://doi.org/10.1164/rccm.200809-1398OC
  30. Zosky GR, Berry LJ, Elliot JG, James AL, Gorman S, Hart PH. 2011. Vitamin D deficiency causes deficits in lung function and alters lung structure. Am. J. Respir. Crit. Care Med. 183: 1336-1343.  https://doi.org/10.1164/rccm.201010-1596OC
  31. Martindale S, McNeill G, Devereux G, Campbell D, Russell G, Seaton A. 2005. Antioxidant intake in pregnancy in relation to wheeze and eczema in the first two years of life. Am. J. Respir. Crit. Care Med. 171: 121-128.  https://doi.org/10.1164/rccm.200402-220OC
  32. Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. 2015. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 10: 995-1013.  https://doi.org/10.2147/COPD.S82518
  33. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, et al. 2019. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51: 481-493.  https://doi.org/10.1038/s41588-018-0321-7
  34. Ortega VE, Li X, O'Neal WK, Lackey L, Ampleford E, Hawkins GA, et al. 2020. The Effects of rare SERPINA1 variants on lung function and emphysema in SPIROMICS. Am. J. Respir. Crit. Care Med. 201: 540-554.  https://doi.org/10.1164/rccm.201904-0769OC
  35. Zuo L, He F, Sergakis GG, Koozehchian MS, Stimpfl JN, Rong Y, et al. 2014. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am. J. Physiol. Lung Cell Mol. Physiol. 307: L205-218.  https://doi.org/10.1152/ajplung.00330.2013
  36. Brody JS, Spira A. 2006. State of the art. Chronic obstructive pulmonary disease, inflammation, and lung cancer. Proc. Am. Thorac. Soc. 3: 535-537.  https://doi.org/10.1513/pats.200603-089MS
  37. Gharib SA, Manicone AM, Parks WC. 2018. Matrix metalloproteinases in emphysema. Matrix Biol. 73: 34-51.  https://doi.org/10.1016/j.matbio.2018.01.018
  38. Belchamber KBR, Singh R, Batista CM, Whyte MK, Dockrell DH, Kilty I, et al. 2019. Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages. Eur. Respir. J. 54: 1802244. 
  39. Polosukhin VV, Richmond BW, Du RH, Cates JM, Wu P, Nian H, et al. 2017. Secretory IgA deficiency in individual small airways is associated with persistent inflammation and remodeling. Am. J. Respir. Crit. Care Med. 195: 1010-1021.  https://doi.org/10.1164/rccm.201604-0759OC
  40. Caramori G, Casolari P, Adcock I. 2013. Role of transcription factors in the pathogenesis of asthma and COPD. Cell Commun. Adhes. 20: 21-40.  https://doi.org/10.3109/15419061.2013.775257
  41. Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, Barnes PJ. 1999. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 160(5 Pt1): 1635-1639. https://doi.org/10.1164/ajrccm.160.5.9811058