DOI QR코드

DOI QR Code

Characterization of a Potential Probiotic Lactiplantibacillus plantarum LRCC5310 by Comparative Genomic Analysis and its Vitamin B6 Production Ability

  • Yunjeong Lee (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Nattira Jaikwang (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Seong keun Kim (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Jiseon Jeong (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Ampaitip Sukhoom (Division of Biological Science, Faculty of Science, Prince of Songkla University) ;
  • Jong-Hwa Kim (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Wonyong Kim (Department of Microbiology, Chung-Ang University College of Medicine)
  • Received : 2022.11.07
  • Accepted : 2023.01.26
  • Published : 2023.05.28

Abstract

Safety assessment and functional analysis of probiotic candidates are important for their industrial applications. Lactiplantibacillus plantarum is one of the most widely recognized probiotic strains. In this study we aimed to determine the functional genes of L. plantarum LRCC5310, isolated from kimchi, using next-generation, whole-genome sequencing analysis. Genes were annotated using the Rapid Annotations using Subsystems Technology (RAST) server and the National Center for Biotechnology Information (NCBI) pipelines to establish the strain's probiotic potential. Phylogenetic analysis of L. plantarum LRCC5310 and related strains showed that LRCC5310 belonged to L. plantarum. However, comparative analysis revealed genetic differences between L. plantarum strains. Carbon metabolic pathway analysis based on the Kyoto Encyclopedia of Genes and Genomes database showed that L. plantarum LRCC5310 is a homofermentative bacterium. Furthermore, gene annotation results indicated that the L. plantarum LRCC5310 genome encodes an almost complete vitamin B6 biosynthetic pathway. Among five L. plantarum strains, including L. plantarum ATCC 14917T , L. plantarum LRCC5310 detected the highest concentration of pyridoxal 5'-phosphate with 88.08 ± 0.67 nM in MRS broth. These results indicated that L. plantarum LRCC5310 could be used as a functional probiotic for vitamin B6 supplementation.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C2003223 and NRF-2022R1A2C2012209), and the Chung-Ang University Research Grants in 2022.

References

  1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514.  https://doi.org/10.1038/nrgastro.2014.66
  2. Kim DH, Jeong D, Kang IB, Kim H, Song KY, Seo KH. 2017. Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue. Mol. Nutr. Food Res. 61: 1700252. 
  3. Bejar W, Hamden K, Ben Salah RB, Chouayekh H. 2013. Lactobacillus plantarum TN627 significantly reduces complications of alloxan-induced diabetes in rats. Anaerobe 24: 4-11  https://doi.org/10.1016/j.anaerobe.2013.08.006
  4. Lee ES, Song EJ, Nam YD, Lee SY. 2018. Probiotics in human health and disease: from nutribiotics to pharmabiotics. J. Microbiol. 56: 773-782.  https://doi.org/10.1007/s12275-018-8293-y
  5. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858.  https://doi.org/10.1099/ijsem.0.004107
  6. Sankar NR, Priyanka VD, Reddy PS, Rajanikanth P, Kumar VK, Indira M. 2012. Purification and characterization of bacteriocin produced by Lactobacillus plantarum isolated from cow milk. Int. J. Microbiol. Res. 3: 133-137. 
  7. Rejiniemon TS, Hussain RR, Rajamani B. 2015. In-vitro functional properties of Lactobacillus plantarum isolated from fermented ragi malt. S. Ind. J. Biol. Sci. 1: 15-23.  https://doi.org/10.22205/sijbs/2015/v1/i1/100437
  8. Ribeiro SC, Stanton C, Yang B, Ross RP, Silva CCG. 2018. Conjugated linoleic acid production and probiotic assessment of Lactobacillus plantarum isolated from Pico cheese. LWT 90: 403-411.  https://doi.org/10.1016/j.lwt.2017.12.065
  9. Yang EJ, Chang HC. 2008. Antifungal activity of Lactobacillus plantarum isolated from kimchi. Microbiol. Biotechnol. Lett. 36: 276-284. 
  10. Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar M, Choi SB, et al. 2019. Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled study. Benef. Microbes 10: 55-373.  https://doi.org/10.3920/BM2017.0146
  11. Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh PL, Balderas MA, et al. 2014. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions. Genome Biol. Evol. 6: 1772-1789.  https://doi.org/10.1093/gbe/evu137
  12. Beck BR, Park GS, Lee YH, Im S, Jeong DY, Kang J. 2019. Whole genome analysis of Lactobacillus plantarum strains isolated from kimchi and determination of probiotic properties to treat mucosal infections by Candida albicans and Gardnerella vaginalis. Front. Microbiol. 10: 433 
  13. Douillard FP, Ribbera A, Ji HM, Kant R, Pietila TE, Randazzo C, et al. 2013. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl. Environ. Microbiol. 79: 1923-1933.  https://doi.org/10.1128/AEM.03467-12
  14. Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T. 2007. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem. J. 407: 1-13.  https://doi.org/10.1042/BJ20070765
  15. Hellmann H, Mooney S. 2010. Vitamin B6: a molecule for human health? Molecules 15: 442-459.  https://doi.org/10.3390/molecules15010442
  16. Colinas M, Eisenhut M, Tohge T, Pesquera M, Fernie AR, Weber AP, et al. 2016. Balancing of B6 vitamers is essential for plant development and metabolism in Arabidopsis. Plant Cell 28: 439-453.  https://doi.org/10.1105/tpc.15.01033
  17. Wrenger C, Eschbach ML, Muller IB, Warnecke D, Walter RD. 2005. Analysis of the vitamin B6 biosynthesis pathway in the human malaria parasite Plasmodium falciparum. J. Biol. Chem. 280: 5242-5248.  https://doi.org/10.1074/jbc.M412475200
  18. Lane DJ. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematic, pp. 115-175. John Wiley and Sons, New York, USA. 
  19. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9.  https://doi.org/10.1093/nar/gkn201
  20. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.  https://doi.org/10.1093/molbev/msw054
  21. Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182. 
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75 
  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624.  https://doi.org/10.1093/nar/gkw569
  24. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. 2020. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 48: D606-D612  https://doi.org/10.1093/nar/gkz943
  25. Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12: 444. 
  26. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42: D199-D205.  https://doi.org/10.1093/nar/gkt1076
  27. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: D517-D525  https://doi.org/10.1093/nar/gkz935
  28. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75: 3491-3500.  https://doi.org/10.1093/jac/dkaa345
  29. Liu B, Zheng D, Jin Q, Chen L, Yang J. 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47: D687-D692.  https://doi.org/10.1093/nar/gky1080
  30. Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O. 2013. PathogenFinder-distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8: e77302. 
  31. Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103  https://doi.org/10.1099/ijsem.0.000760
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. 
  33. Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35: W52-W57.  https://doi.org/10.1093/nar/gkm360
  34. Smetankova J, Hladikova Z, Valach F, Zimanova M, Kohajdova Z, Greif G, et al. 2012. Influence of aerobic and anaerobic conditions on the growth and metabolism of selected strains of Lactobacillus plantarum. Acta. Chimica. Slovaca. 5: 204 
  35. Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, Hunter N. 2004. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J. Clin. Microbiol. 42: 3128-3136.  https://doi.org/10.1128/JCM.42.7.3128-3136.2004
  36. Yu J, Ahn S, Kim K, Caetano-Anolles K, Lee C, Kang J, et al. 2017. Comparative genomic analysis of Lactobacillus plantarum GB-LP1 isolated from traditional Korean fermented food. J. Microbiol. Biotechnol. 27: 1419-1427.  https://doi.org/10.4014/jmb.1704.04005
  37. Moghadam MS, Foo HL, Leow TC, Rahim RA, Loh TC. 2010. Novel bacteriocinogenic Lactobacillus plantarum strains and their differentiation by sequence analysis of 16S rDNA, 16S-23S and 23S-5S intergenic spacer regions and randomly amplified polymorphic DNA analysis. Food Technol. Biotechnol. 48: 476-483. 
  38. El Halfawy NM, El Naggar MY, Andrews SC. 2017. Complete genome sequence of Lactobacillus plantarum 10CH, a potential probiotic lactic acid bacterium with potent antimicrobial activity. Genome. Announc. 5: e01398-17. 
  39. Wan KH, Yu C, Park S, Hammonds AS, Booth BW, Celniker SE. 2017. Complete genome sequence of Lactobacillus plantarum oregon-R-modENCODE strain BDGP2 isolated from Drosophila melanogaster gut. Genome Announc. 5: e01155-17. 
  40. De Jesus LCL, De Jesus Sousa T, Coelho-Rocha ND, Profeta R, Barroso FAL, Drumond MM, et al. 2021. Safety evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a health-promoting bacteria. Probiotics Antimicrob. Proteins 13: 1-14.  https://doi.org/10.1007/s12602-020-09640-z
  41. European Food Safety Authority (EFSA). 2007. Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA-Opinion of the Scientific Committee. EFSA. Jol. 5: 587 
  42. Li B, Zhan M, Evivie SE, Jin D, Zhao L, Chowdhury S, et al. 2018. Evaluating the safety of potential probiotic Enterococcus durans KLDS6.0930 using whole genome sequencing and oral toxicity study. Front. Microbiol. 9: 1943. 
  43. Papadimitriou K, Alegria A, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, et al. 2016. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 80: 837-890.  https://doi.org/10.1128/MMBR.00076-15
  44. Tran TD, Ali MA, Lee D, Felix MA, Luallen RJ. 2022. Bacterial filamentation as a mechanism for cell-to-cell spread within an animal host. Nat. Commun. 13: 693. 
  45. Yang Z, Xu M, Li Q, Wang T, Zhang B, Zhao H, et al. 2021. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int. J. Biol. Macromol. 182: 1874-1882.  https://doi.org/10.1016/j.ijbiomac.2021.05.178
  46. Zhang C, Ma K, Nie K, Deng M, Luo W, Wu X, et al. 2022. Assessment of the safety and probiotic properties of Roseburia intestinalis: a potential "next generation probiotic". Front. Microbiol. 13: 973046. 
  47. Liu Y, Tang H, Lin Z, Xu P. 2015. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 33: 1484-1492.  https://doi.org/10.1016/j.biotechadv.2015.06.001
  48. Desriac N, Broussolle V, Postollec F, Mathot AG, Sohier D, Coroller L, et al. 2013. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers. Front. Microbiol. 4: 284. 
  49. Padan E, Venturi M, Gerchman Y, Dover N. 2001. Na(+)/H(+) antiporters. Biochim. Biophys. Acta 1505: 144-157.  https://doi.org/10.1016/S0005-2728(00)00284-X
  50. Oliveira LC, Saraiva TD, Silva WM, Pereira UP, Campos BC, Benevides LJ, et al. 2017. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One 12: e0175116. 
  51. Lim SM. 2014. Antimutagenicity activity of the putative probiotic strain Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaves Jangajji. Food. Sci. Biotechnol. 23: 141-150.  https://doi.org/10.1007/s10068-014-0019-2
  52. Wu Q, Tun HM, Leung FCC, Shah NP. 2014. Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci. Rep. 4: 4974. 
  53. Zeng Z, Zuo F, Marcotte H. 2019. Putative adhesion factors in vaginal Lactobacillus gasseri DSM 14869: functional characterization. Appl. Environ. Microbiol. 85: e00800-19.  https://doi.org/10.1128/AEM.00800-19
  54. Henderson B, Nair S, Pallas J, Williams MA. 2011. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS. Microbiol. Rev. 35: 147-200.  https://doi.org/10.1111/j.1574-6976.2010.00243.x
  55. Ganzle MG. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2: 106-117  https://doi.org/10.1016/j.cofs.2015.03.001
  56. Di Salvo ML, Contestabile R, Safo MK. 2011. Vitamin B6 salvage enzymes: mechanism, structure and regulation. Biochim. Biophys. Acta 1814: 1597-1608.  https://doi.org/10.1016/j.bbapap.2010.12.006
  57. Booth AA, Khalifah RG, Todd P, Hudson BG. 1997. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs): novel inhibition of post-Amadori glycation pathways. J. Biol. Chem. 272: 5430-5437.  https://doi.org/10.1074/jbc.272.9.5430
  58. Kim HH, Kang YR, Lee JY, Chang HB, Lee KW, Apostolidis E, et al. 2018. The postprandial anti-hyperglycemic effect of pyridoxine and its derivatives using in vitro and in vivo animal models. Nutrients 10: 285.