DOI QR코드

DOI QR Code

A High-Throughput Method Based on Microculture Technology for Screening of High-Yield Strains of Tylosin-Producing Streptomyces fradiae

  • Zhiming Yao (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Jingyan Fan (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Jun Dai (Hubei Provincial Bioengineering Technology Research Center for Animal Health Products) ;
  • Chen Yu (Hubei Provincial Bioengineering Technology Research Center for Animal Health Products) ;
  • Han Zeng (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Qingzhi Li (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Wei Hu (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Chaoyue Yan (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Meilin Hao (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Haotian Li (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Shuo Li (Hubei Provincial Bioengineering Technology Research Center for Animal Health Products) ;
  • Jie Liu (Hubei Provincial Bioengineering Technology Research Center for Animal Health Products) ;
  • Qi Huang (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Lu Li (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Rui Zhou (National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
  • Received : 2022.10.17
  • Accepted : 2023.02.28
  • Published : 2023.06.28

Abstract

Tylosin is a potent veterinary macrolide antibiotic produced by the fermentation of Streptomyces fradiae; however, it is necessary to modify S. fradiae strains to improve tylosin production. In this study, we established a high-throughput, 24-well plate screening method for identifying S. fradiae strains that produce increased yields of tylosin. Additionally, we constructed mutant libraries of S. fradiae via ultraviolet (UV) irradiation and/or sodium nitrite mutagenesis. A primary screening of the libraries in 24-well plates and UV spectrophotometry identified S. fradiae mutants producing increased yields of tylosin. Mutants with tylosin yield 10% higher than the wild-type strain were inoculated into shake flasks, and the tylosin concentrations produced were determined by high-performance liquid chromatography (HPLC). Joint (UV irradiation and sodium nitrite) mutagenesis resulted in higher yields of mutants with enhanced tylosin production. Finally, 10 mutants showing higher tylosin yield were re-screened in shake flasks. The yield of tylosin A by strains UN-C183 (6767.64 ± 82.43 ㎍/ml) and UN-C137 (6889.72 ± 70.25 ㎍/ml) was significantly higher than that of the wild-type strain (6617.99 ± 22.67 ㎍/ml). These mutant strains will form the basis for further strain breeding in tylosin production.

Keywords

Acknowledgement

This research was funded by the Hubei Province Technology Innovation Project (2019AEE005). We thank the Hubei Provincial Bioengineering Technology Research Center for Animal Health Products for their technical support and Prof. Paul R. Langford from Imperial College London for language modifications to the manuscript.

References

  1. Brahimi-Horn MC, Luo SH, Wang SL, Gau SW, Mou DG. 1992. Synthesis of hydrolytic enzymes during production of tylosin by Streptomyces fradiae. J. Ind. Microbiol. 10: 25-30. https://doi.org/10.1007/BF01583630
  2. Seno ET, Pieper RL, Huber FM. 1977. Terminal stages in the biosynthesis of tylosin. Antimicrob. Agents Chemother. 11: 455-461. https://doi.org/10.1128/AAC.11.3.455
  3. Kim E, Song MC, Kim MS, Beom JY, Lee EY, Kim DM, et al. 2016. Characterization of the two methylation steps involved in the biosynthesis of mycinose in tylosin. J. Nat. Prod. 79: 2014-2021. https://doi.org/10.1021/acs.jnatprod.6b00267
  4. Adrio JL, Demain AL. 2006. Genetic improvement of processes yielding microbial products. FEMS Microbiol. Rev. 30: 187-214. https://doi.org/10.1111/j.1574-6976.2005.00009.x
  5. Teeter JS, Meyerhoff RD. 2003. Aerobic degradation of tylosin in cattle, chicken, and swine excreta. Environ. Res. 93: 45-51. https://doi.org/10.1016/S0013-9351(02)00086-5
  6. Kreuzman AJ, Turner JR, Yeh WK. 1988. Two distinctive O-methyltransferases catalyzing penultimate and terminal reactions of macrolide antibiotic (tylosin) biosynthesis. Substrate specificity, enzyme inhibition, and kinetic mechanism. J. Biol. Chem. 263: 15626-15633. https://doi.org/10.1016/S0021-9258(19)37634-3
  7. Huang SL, Hassell TC, Yeh WK. 1993. Purification and properties of NADPH-dependent tylosin reductase from Streptomyces fradiae. J. Biol. Chem. 268: 18987-18993. https://doi.org/10.1016/S0021-9258(17)46724-X
  8. Buchs J. 2001. Introduction to advantages and problems of shaken cultures. Biochem. Eng. J. 7: 91-98. https://doi.org/10.1016/S1369-703X(00)00106-6
  9. Gao H, Liu M, Zhou X, Liu J, Zhuo Y, Gou Z, et al. 2010. Identification of avermectin-high-producing strains by high-throughput screening methods. Appl. Microbiol. Biotechnol. 85: 1219-1225. https://doi.org/10.1007/s00253-009-2345-5
  10. Renciuk D, Blacque O, Vorlickova M, Spingler B. 2013. Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine. Nucleic Acids Res. 41: 9891-9900. https://doi.org/10.1093/nar/gkt738
  11. Zeng W, Guo L, Xu S, Chen J, Zhou J. 2020. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 38: 888-906. https://doi.org/10.1016/j.tibtech.2020.01.001
  12. Tan J, Chu J, Hao Y, Guo Y, Zhuang Y, Zhang S. 2013. High-throughput system for screening of Cephalosporin C high-yield strain by 48-deep-well microtiter plates. Appl. Biochem. Biotechnol. 169: 1683-1695. https://doi.org/10.1007/s12010-013-0095-4
  13. Qi H, Lv M, Song K, Wen J. 2017. Integration of parallel (13) C-labeling experiments and in silico pathway analysis for enhanced production of ascomycin. Biotechnol. Bioeng. 114: 1036-1044. https://doi.org/10.1002/bit.26223
  14. Baltz RH. 2001. Genetic methods and strategies for secondary metabolite yield improvement in actinomycetes. Antonie Van Leeuwenhoek. 79: 251-259. https://doi.org/10.1023/A:1012020918624
  15. Singh V, Khan M, Khan S, Tripathi CK. 2009. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl. Microbiol. Biotechnol. 82: 379-385. https://doi.org/10.1007/s00253-008-1828-0
  16. Yu Z, Shen X, Wu Y, Yang S, Ju D, Chen S. 2019. Enhancement of ascomycin production via a combination of atmospheric and room temperature plasma mutagenesis in Streptomyces hygroscopicus and medium optimization. AMB Express 9: 25.
  17. Fishman SE, Cox K, Larson JL, Reynolds PA, Seno ET, Yeh WK, et al. 1987. Cloning genes for the biosynthesis of a macrolide antibiotic. Proc. Natl. Acad. Sci. USA 84: 8248-8252. https://doi.org/10.1073/pnas.84.23.8248
  18. Lackmann JW, Bandow JE. 2014. Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl. Microbiol. Biotechnol. 98: 6205-6213. https://doi.org/10.1007/s00253-014-5781-9
  19. Demain AL, Adrio JL. 2008. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. Prog. Drug Res. 65: 251, 253-289.
  20. Ikehata H, Ono T. 2011. The mechanisms of UV mutagenesis. J. Rad. Res. 52: 115-125. https://doi.org/10.1269/jrr.10175
  21. Baltz RH, Stonesifer J. 1985. Adaptive response and enhancement of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis by chloramphenicol in Streptomyces fradiae. J. Bacteriol. 164: 944-946. https://doi.org/10.1128/jb.164.2.944-946.1985
  22. Parekh S, Vinci VA, Strobel RJ. 2000. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54: 287-301. https://doi.org/10.1007/s002530000403
  23. Siddiqi, O. H. 1962. Mutagenic action of nitrous acid on Aspergillus nidulans. Genet. Res. 3: 303.
  24. Kaudewitz F. 1959. Production of bacterial mutants with nitrous acid. Nature 183: 1829-1830. https://doi.org/10.1038/1831829a0
  25. Sivaramakrishnan R, Incharoensakdi A. 2017. Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment. Bioresour. Technol. 235: 366-370. https://doi.org/10.1016/j.biortech.2017.03.102
  26. Fallahpour N, Adnani S, Rassi H, Asli E. 2017. Overproduction of erythromycin by ultraviolet mutagenesis and expression of ermE gene in Saccharopolyspora erythraea. Assay Drug Dev. Technol. 15: 314-319. https://doi.org/10.1089/adt.2017.802
  27. Wang X, Tian X, Wu Y, Shen X, Yang S, Chen S. 2018. Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization. Prep. Biochem. Biotechnol. 48: 514-521. https://doi.org/10.1080/10826068.2018.1466156
  28. Adams E, Liu L, Dierick K, Guyomard S, Nabet P, Rico S, et al. 1998. Neomycin: microbiological assay or liquid chromatography? J. Pharm. Biomed Anal. 17: 757-766. https://doi.org/10.1016/S0731-7085(97)00247-1
  29. Hamidian K, Amini M, Samadi N. 2018. Consistency evaluation between matrix components ratio and microbiological potency of tylosin major components. Daru 26: 155-164. https://doi.org/10.1007/s40199-018-0220-6
  30. Manteca A, Alvarez R, Salazar N, Yague P, Sanchez J. 2008. Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl. Environ. Microbiol. 74: 3877-3886. https://doi.org/10.1128/AEM.02715-07
  31. van Dissel D, Claessen D, van Wezel GP. 2014. Morphogenesis of Streptomyces in submerged cultures. Adv. Appl. Microbiol. 89: 1-45. https://doi.org/10.1016/B978-0-12-800259-9.00001-9
  32. Yu F, Zhang M, Sun J, Wang F, Li X, Liu Y, et al. 2022. Improved neomycin sulfate potency in Streptomyces fradiae using atmospheric and room temperature plasma (ARTP) mutagenesis and fermentation medium optimization. Microorganisms 10: 94.
  33. Baltz RH, Seno ET. 1981. Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 20: 214-225. https://doi.org/10.1128/AAC.20.2.214
  34. Seno ET, Baltz RH. 1982. S-Adenosyl-L-methionine: macrocin O-methyltransferase activities in a series of Streptomyces fradiae mutants that produce different levels of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 21: 758-763. https://doi.org/10.1128/AAC.21.5.758
  35. Ghribi D, Zouari N, Jaoua S. 2004. Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by u.v. and nitrous acid affecting metabolic pathways and/or delta-endotoxin synthesis. J. Appl. Microbiol. 97: 338-346. https://doi.org/10.1111/j.1365-2672.2004.02323.x
  36. Zhang W, Liu F, Yang M, Liang Q, Zhang Y, Ai D, et al. 2014. Enhanced beta-galactosidase production of Aspergillus oryzae mutated by UV and LiCl. Prep. Biochem. Biotechnol. 44: 310-320. https://doi.org/10.1080/10826068.2013.829496
  37. Zhang K, Mohsin A, Dai Y, Chen Z, Zhuang Y, Chu J, et al. 2019. Combinatorial effect of ARTP mutagenesis and ribosome engineering on an industrial strain of Streptomyces albus S12 for enhanced biosynthesis of salinomycin. Front. Bioeng. Biotechnol. 7: 212.
  38. Long R, Yang W, Huang G. 2020. Optimization of fermentation conditions for the production of epothilone B. Chem. Biol. Drug Des. 96: 768-772. https://doi.org/10.1111/cbdd.13682
  39. Luo Y, Ding X, Xia L, Huang F, Li W, Huang S, et al. 2011. Comparative proteomic analysis of Saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci. 9: 40.
  40. Rodriguez E, Ward S, Fu H, Revill WP, McDaniel R, Katz L. 2004. Engineered biosynthesis of 16-membered macrolides that require methoxymalonyl-ACP precursors in Streptomyces fradiae. Appl. Microbiol. Biotechnol. 66: 85-91. https://doi.org/10.1007/s00253-004-1658-7
  41. Huang K, Zhang B, Chen Y, Liu ZQ, Zheng YG. 2020. Comparative transcriptome analysis of Streptomyces nodosus mutant with a high-yield amphotericin B. Front. Bioeng. Biotechnol. 8: 621431.
  42. Khaliq S, Akhtar K, Afzal Ghauri M, Iqbal R, Mukhtar Khalid A, Muddassar M. 2009. Change in colony morphology and kinetics of tylosin production after UV and gamma irradiation mutagenesis of Streptomyces fradiae NRRL-2702. Microbiolog. Res. 164: 469-477. https://doi.org/10.1016/j.micres.2007.02.005
  43. Yan L, Zhang Z, Zhang Y, Yang H, Qiu G, Wang D, et al. 2021. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Biotechnol. Lett. 43: 1765-1778. https://doi.org/10.1007/s10529-021-03144-8
  44. Ye L, Ye R, Hu F, Wang G. 2021. Combination of atmospheric and room temperature plasma (ARTP) mutagenesis, genome shuffling and dimethyl sulfoxide (DMSO) feeding to improve FK506 production in Streptomyces tsukubaensis. Biotechnol. Lett. 43: 1809-1820. https://doi.org/10.1007/s10529-021-03154-6
  45. Stratigopoulos G, Bate N, Cundliffe E. 2004. Positive control of tylosin biosynthesis: pivotal role of TylR. Mol. Microbiol. 54: 1326-1334. https://doi.org/10.1111/j.1365-2958.2004.04347.x