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RNAs are pivotal molecules acting as messengers of genetic in-
formation and regulatory molecules for cellular development 
and survival. From birth to death, RNAs face constant cellular 
decision for the precise control of cellular function and acti-
vity. Most eukaryotic cells employ conserved machineries for 
RNA decay including RNA silencing and RNA quality control 
(RQC). In plants, RQC monitors endogenous RNAs and de-
grades aberrant and dysfunctional species, whereas RNA silen-
cing promotes RNA degradation to repress the expression of 
selected endogenous RNAs or exogenous RNA derived from 
transgenes and virus. Interestingly, emerging evidences have 
indicated that RQC and RNA silencing interact with each by 
sharing target RNAs and regulatory components. Such inter-
action should be tightly organized for proper cellular survival. 
However, it is still elusive that how each machinery specifi-
cally recognizes target RNAs. In this review, we summarize re-
cent advances on RNA silencing and RQC pathway and dis-
cuss potential mechanisms underlying the interaction between 
the two machineries. [BMB Reports 2023; 56(6): 321-325]

INTRODUCTION

RNAs play a pivotal role in living organisms as a converter of 
genetic information into functional proteins and/or a regulatory 
molecule to modulate a wide range of biological processes. 
Therefore, RNA metabolism, including transcription, modifica-
tion, processing and degradation, should be precisely controlled 
in response to internal and external cues (1). RNAs are cons-
tantly monitored. Aberrant and/or dysfunctional RNAs are sub-
jected to degradation by different types of RNA surveillance 
mechanisms such as RQC and RNA silencing (2). Exonucleo-
lytic RQC generally occurs through bidirectional mechanisms: 

XRN nuclease-dependent 5’-3’ degradation and exosome-me-
diated 3’-5’ degradation. Deadenylation catalyzed by 3’-5’ 
poly(A)-specific ribonuclease (PARN) and carbon catabolites 
repressor 4 (CCR4) can lead to multimeric exosome complex- 
mediated mRNA decay, followed by 5’ decapping, which can 
result in 5’-3’ mRNA degradation through activities of XRN 
exonucleases (3). RNA silencing is responsible for the regu-
lation of endogenous and exogenous gene expression at tran-
scriptional and post-transcriptional levels, which is mediated 
by 21-24 nt small regulatory RNAs. Each machinery selectively 
recognizes target RNAs and promotes their degradation (2). 
Emerging evidences have suggested that different types of RNA 
surveillance mechanisms interact with each other and share 
target RNA substrates and regulatory components (2, 4). In this 
review, we discuss recent advances on RNA surveillance me-
chanisms and their crosstalk, focusing on the interaction be-
tween RNA silencing and RQC.

RNA SILENCING PATHWAYS IN PLANTS

Small RNAs such as microRNAs (miRNAs) and short-inter-
fering RNAs (siRNAs) are central contributors to RNA silencing 
in plants (5). Formation of double-stranded RNA is the pre-
requisite to turn on the RNA silencing pathway. Double 
stranded-RNAs originated from endogenous genes, heterochro-
matic regions, or exogenous genes are chopped by DICER- 
LIKE (DCL) enzymes to produce miRNAs or siRNAs of ∼21-24 
nt in length (2, 6-8). These small RNAs are incorporated into 
the ARGOUNAUTE complex, facilitating transcriptional or post- 
transcriptional levels. Generally, miRNAs of ∼21 nt in length 
and a subset of siRNAs direct mRNA cleavage or translational 
inhibition to control development processes and stress re-
sponses, whereas siRNAs of ∼24 nt in length repress tran-
scriptional activation through DNA methylation and chromatin 
modification (2, 7-9).

One of the major functions of RNA silencing is to defense 
plants against viral infection and transgene introduction via 
post-transcriptional gene silencing (PTGS) (10, 11). A single 
stranded RNA from viral RNAs or transgene-derived transcripts 
can be recognized by RNA-DEPENDENT RNA POLYMERASE 
6 (RDR6) as a substrate, which is converted into a double- 
stranded RNA and processed into siRNAs of ∼21 nt in length 
(12, 13). One of the key characteristics of RDR6-dependent 
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Fig. 1. RNA degradation processes controlled by the RNA quality 
control and the RNA silencing pathways. RNA degradation processes 
targeted by the RNA quality control and the RNA silencing pathways 
and their interaction. The RQC pathway degrades aberrant RNAs such 
as decapped and/or deadenylated transcripts through exonuclease 
activities. Exogenous and a portion of endogenous RNAs enter to 
the RNA silencing pathway by the production of RDR6-dependent 
siRNAs. The siRNAs are loaded onto AGO1 and facilitate mRNA 
cleavage. The RQC pathway eliminates aberrant RNAs via mRNA 
deadenylation and decapping-dependent bidirectional degradation.
The RQC pathway suppresses RNA silencing. When the RQC path-
way does not operate properly, the accumulated RNAs are served 
as substrates for RDR6, which turns on RNA silencing. Meanwhile, 
RPT2a, a subunit of 26S proteasome complex, attenuates the RQC 
pathway, resulting enforced RNA silencing, which suggests that the 
two pathways might have more dynamic bidirectional antagonistic in-
teraction depending on the situation.

siRNA is reinforcement of the initial siRNA-mediated repres-
sive signal. After the initial cut by siRNAs, cleaved target RNAs 
are subsequently processed by RDR6, resulting production of 
amplified siRNAs called secondary siRNAs (Fig. 1) (11). In 
turn, secondary siRNAs further degrade target RNAs. RDR6 
also generates siRNAs from a subset of endogenous transcripts 
(11). The production of trans-acting siRNAs (tasiRNAs) is ini-
tiated by miRNA-directed cleavage of long non-coding TAS 
gene transcripts, which are further processed by RDR6-de-
pednet siRNA biogenesis (14, 15). Unlike other siRNA species, 
tasiRNAs play a critical role in plant development (16, 17).

RNA QUALITY CONTROL AS A KEY MACHINERY TO 
ENSURE RNA FIDELITY IN PLANTS

The primary transcripts undergo multiple steps including 5’ 
capping, polyadenylation, splicing, and translation called RNA 
processing to become final and functional molecules (1). Both 
5’ capping and polyadenylation prevent mRNA degradation 
from 5’-3’ and 3’-5’ exonucleases. Splicing removes introns 
from primary transcripts and ligates exons to generate mature 

mRNAs, which are eventually translated into functional pro-
teins. In these processes, the RQC machinery gets rid of any 
unproperly processed RNAs to secure the fidelity of mRNA 
processing (18). In addition, eukaryotic cells monitor RNA 
quality during translation by surveillance mechanisms including 
nonsense-mediated decay (NMD), non-stop decay (NSD), and 
no-go decay (NGD), which can enhance RNA degradation 
(19). The NMD pathway facilitates RNA degradation that 
contains premature termination codons (20, 21). The NSD 
pathway targets mRNA missing translation termination code 
(22). The NGD pathway discriminates mRNAs with a trans-
lation elongation error represented by ribosome stalling (22).

General RNA degradation occurs bidirectionally through pro-
cesses involving conserved enzymatic factors. Removal of 
poly(A) is accomplished by PARN and CCR4, by which RNA 
degradation is initiated from the unprotected 3’ ends through 
the exosome complex and its co-factors such as RIBOSOMAL 
RNA PROCESSING (RRP) proteins and the SKI complex (3, 
23-25). Decapping is then processed by decapping proteins 
such as DECAPPING 1 (DCP1), DECAPPING 2 (DCP2), 
DECAPPING 3 (DCP3), and VARICOSE (VCS). Naked 5’ ends 
are then subjected to 5’-3’ degradation by XRN4, a predomi-
nant cytoplasmic exonuclease. In addition, XRN2 and XRN3 
degrade transcripts in the nucleus (Fig. 1) (3, 26-29).

RNA SILENCING INTERACTS WITH RNA QUALITY 
CONTROL PATHWAY

RNA silencing and RQC were originally thought to act in-
dependently. However, emerging evidences have suggested 
that these two pathways can functionally interact with each 
other. There are solid evidences showing that a subset of 
components involving RNA processing and/or RQC pathways 
can act as suppressors of RNA silencing (30-37). In Arabi-
dopsis, impaired decapping and deadenylation can restrict 
RNA silencing (33, 35, 38). Mutations in PARN and CCR4a 
are known to promote transgene silencing (33). In addition, 
decapping proteins including DCP1, DCP2, and VCS can 
prevent transgene PTGS. In these mutants, the production of 
RDR6-dependent siRNAs at the transgene locus is increased, 
enhancing transgene silencing (35, 38). Exonucleolytic degra-
dation is also linked to RNA silencing (30, 39, 40). Impaired 
5’-3’ or 3’-5’RNA degradation machinery can promote PTGS. 
In Arabidopsis, XRN proteins are responsible for 5’-3’ degra-
dation. Functional deficiency of XRN4 can accumulate uncap-
ped transcripts, which can trigger the production of 21 nt 
siRNAs and PTGS (30, 39). FIERY 1, a positive regulator of XRN 
proteins, can negatively regulate PTGS in an XRN-mediated 
manner (40). RNA surveillance accomplished by exosome- 
directed 3’-5’ RNA degradation through several components of 
exosome complex and co-factors such as RRP4, RRP41, RRP44A, 
and SKI3 can also suppress PTGS (34, 36, 41, 42). A recent 
study further supports this interaction, in which RPT2a, a sub-
unit of 26S proteasome complex, can diminish the RQC path-
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way, resulting in enhancement of transgene PTGS (Fig. 1) (37). 
A large portion of studies regarding the interaction between 

RNA silencing and RQC have been accomplished by trans-
gene-derived PTGS (12, 33, 36, 38, 43). However, this 
interaction is also effective for endogenous genes (31-35, 44). 
In Arabidopsis, impaired decapping machinery can enhance 
the production of RDR6-depedent siRNAs from hundreds of 
endogenous mRNAs (35). When 5’-3’ and 3’-5’ bidirectional 
degradation is compromised, the effect is more dramatic (44). 
Although a single mutant of xrn4 or ski2 shows a relatively 
mild phenotype, xrn4 ski2 double mutants show very severe 
developmental retardation (44). RDR6-dependent siRNAs are 
generated from over 400 hundred protein coding genes. In-
triguingly, morphological phenotype and siRNA production in 
xrn4 ski2 can be rescued by the introduction of rdr6 mutation, 
indicating that bidirectional RNA decay pathways play a cri-
tical role in preventing the trigger of RNA silencing.

PATH TO RNA SILENCING

RNA silencing and RQC compete for the same RNA substrates. 
How does a cell determine RNA’s fate: its entry to RNA silen-
cing or the RQC pathway? Although the exact mechanism 
remains elusive, emerging research studies have accumulated 
important clues to answer this question. Studies on transgene 
PTGS have raised a possibility that the expression level of 
transgene is correlated with the entry to RNA silencing (45). 
For example, ectopic expression of transgene showed a high 
rate of induction of RNA silencing, whereas ectopically ex-
pressed transgenes did not always undergo PTGS (45). Fur-
thermore, expression levels of endogenous protein-coding mRNAs 
are not correlated to the production of RDR6-depedent siRNAs 
(35). Therefore, RNA quantity is not a sufficient factor for the 
entry of RNA silencing. In another aspect, RNA quality or 
characteristic is also important. Decapped and improperly 
terminated RNAs are likely to serve as substrates for RDR6, 
which can trigger RNA silencing (35, 38). In addition, key 
components of NMD have been isolated as suppressors of 
RNA silencing (33, 43). Mutations on UP FRAMESHIFT 1 (UPF1) 
and UP FRAMESHIFT 3 (UPF3) can promote transgene PTGS, 
indicating that RNA quality is somehow linked to the evo-
cation of RNA silencing. Besides, recent studies have suggested 
that non-canonical RNA modification such as NAD+ capping 
can promote RDR6-dependent PTGS (46, 47). These findings 
indicate that RNA quantity and quality monitored by a cell 
could be criteria to provoke RNA silencing. Accumulated evi-
dences have indicated that the fate of RNAs to RNA silencing 
and/or the RQC pathway is systematically regulated. However, 
further investigation is needed to understand mechanisms un-
derlying it.

CONCLUSION

A eukaryotic cell employs RNA silencing and/or RQC to main-

tain RNA integrity. The RQC pathway eliminates aberrant or 
dysfunctional RNAs to prevent production of toxic proteins. 
RNA silencing represses target RNAs, which is critical for plant 
development and defense. It is evident that RNA silencing and 
RQC pathways interact with each other. If the interaction is 
not properly regulated, RNA quality will become disordered. 
When the RQC machinery is impaired, aberrant and dysfunc-
tional RNAs will become over-accumulated, which can served 
as templates for RDR6 and amplify repressive signals for 
unwanted endogenous RNAs. Therefore, a plant cell should be 
able to monitor and decide target RNA’s destiny into either 
RQC or RNA silencing. Great efforts have been made to 
dissect the molecular mechanism underlying this interaction in 
Arabidopsis. Our understanding is not complete yet.

The RQC pathway has been thought to play an important 
role in deciding whether a shared target RNA should enter into 
RQC or RNA silencing because the accessibility of RDR6 to 
the target RNA depends on the activity of RQC. A recent study 
has shown that 26S proteasome-mediated repression of the 
RQC pathway can promote transgene PTGS in Arabidopsis 
(37) . This result suggests that the cellular system might adjust 
the interaction between RNA silencing and RQC according to 
internal/external cues, which needs further investigation. 
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