DOI QR코드

DOI QR Code

Oral administration of ginseng berry concentrate improves lactate metabolism and increases endurance performance in mice

  • Eun-Ju Jin (Department of Precision Medicine, Sungkyunkwan University School of Medicine) ;
  • Shibo Wei (Department of Precision Medicine, Sungkyunkwan University School of Medicine) ;
  • Yunju Jo (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Thanh T. Nguyen (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Moongi Ji (College of Pharmacy, Sunchon National University) ;
  • Man-Jeong Paik (College of Pharmacy, Sunchon National University) ;
  • Jee-Heon Jeong (Department of Precision Medicine, Sungkyunkwan University School of Medicine) ;
  • Se Jin Im (Department of Immunology, Sungkyunkwan University School of Medicine) ;
  • Dongryeol Ryu (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2023.03.22
  • Accepted : 2023.04.06
  • Published : 2023.06.30

Abstract

In the present study, to determine the efficacy of oral supplementation of ginseng berry extracts in augmenting exercise performance and exercise-associated metabolism, male mice were given orally 200 and 400 mg/kg of body weight (BW) of GBC for nine weeks. Although there are no differences in pre-exercise blood lactate levels among (1) the control group that received neither exercise nor GBC, (2) the group that performed only twice-weekly endurance exercise, and (3) and (4) the groups that combined twice-weekly endurance exercise with either 200 or 400 mg/kg GBC, statistically significant reductions in post-exercise blood lactate levels were observed in the groups that combined twice-weekly endurance exercise with oral administration of either 200 or 400 mg/kg GBC. Histological analysis showed no muscle hypertrophy, but transcriptome analysis revealed changes in gene sets related to lactate metabolism and mitochondrial function. GBC intake increased nicotinamide adenine dinucleotide levels in the gastrocnemius, possibly enhancing the mitochondrial electron transport system and lactate metabolism. Further molecular mechanisms are needed to confirm this hypothesis.

Keywords

Acknowledgement

This study was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT, 2023R1A2C3006220 and 2021R1A5A8029876).

References

  1. Ratan ZA, Haidere MF, Hong YH et al (2021) Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 45, 199-210 https://doi.org/10.1016/j.jgr.2020.02.004
  2. Seong MA, Woo JK, Kang JH et al (2015) Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-kappaB signaling and protects intestinal epithelial barrier. BMB Rep 48, 419-425 https://doi.org/10.5483/BMBRep.2015.48.7.039
  3. Park BJ, Lim YS, Lee HJ et al (2009) Anti-oxidative effects of Phellinus linteus and red ginseng extracts on oxidative stress-induced DNA damage. BMB Rep 42, 500-505 https://doi.org/10.5483/BMBRep.2009.42.8.500
  4. Park EY, Kim HJ, Kim YK et al (2012) Increase in insulin secretion induced by panax ginseng berry extracts contributes to the amelioration of hyperglycemia in streptozoto-cininduced diabetic mice. J Ginseng Res 36, 153-160 https://doi.org/10.5142/jgr.2012.36.2.153
  5. Attele AS, Zhou YP, Xie JT et al (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51, 1851-1858 https://doi.org/10.2337/diabetes.51.6.1851
  6. Kim J, Toda T, Watanabe K et al (2019) Syringaresinol reverses age-related skin atrophy by suppressing FoxO3a-mediated matrix metalloproteinase-2 activation in copper/zinc superoxide dismutase-deficient mice. J Invest Dermatol 139, 648-655 https://doi.org/10.1016/j.jid.2018.10.012
  7. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122 https://doi.org/10.1016/j.cell.2006.11.013
  8. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060 https://doi.org/10.1038/nature07813
  9. Houtkooper RH, Pirinen E and Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13, 225-238 https://doi.org/10.1038/nrm3293
  10. Katsyuba E, Romani M, Hofer D and Auwerx J (2020) NAD+ homeostasis in health and disease. Nat Metab 2, 9-31 https://doi.org/10.1038/s42255-019-0161-5
  11. Canto C, Menzies KJ and Auwerx J (2015) NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22, 31-53 https://doi.org/10.1007/s10570-014-0481-2
  12. Zhang H, Ryu D, Wu Y et al (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436-1443 https://doi.org/10.1126/science.aaf2693
  13. Katsyuba E, Mottis A, Zietak M et al (2018) De novo NAD(+) synthesis enhances mitochondrial function and improves health. Nature 563, 354-359 https://doi.org/10.1038/s41586-018-0645-6
  14. Ryu D, Zhang H, Ropelle ER et al (2016) NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med 8, 361ra139
  15. Yoshino J, Baur JA and Imai SI (2018) NAD+ Intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab 27, 513-528 https://doi.org/10.1016/j.cmet.2017.11.002
  16. Giroud-Gerbetant J, Joffraud M, Giner MP et al (2019) A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor. Mol Metab 30, 192-202 https://doi.org/10.1016/j.molmet.2019.09.013
  17. Chen S, Minegishi Y, Hasumura T, Shimotoyodome A and Ota N (2020) Involvement of ammonia metabolism in the improvement of endurance performance by tea catechins in mice. Sci Rep 10, 6065
  18. Mutch BJ and Banister EW (1983) Ammonia metabolism in exercise and fatigue: a review. Med Sci Sports Exerc 15, 41-50 https://doi.org/10.1249/00005768-198315010-00009
  19. Wilkinson DJ, Smeeton NJ and Watt PW (2010) Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol 91, 200-219
  20. Jeong KJ, Kim GW and Chung SH (2014) AMP-activated protein kinase: An emerging target for ginseng. J Ginseng Res 38, 83-88 https://doi.org/10.1016/j.jgr.2013.11.014
  21. Liu Z, Cui C, Xu P et al (2017) Curcumin activates AMPK pathway and regulates lipid metabolism in rats following prolonged clozapine exposure. Front Neurosci 11, 558
  22. Park HW, Cho SY, Kim HH et al (2015) Enantioselective induction of SIRT1 gene by syringaresinol from Panax ginseng berry and Acanthopanax senticosus Harms stem. Bioorg Med Chem Lett 25, 307-309 https://doi.org/10.1016/j.bmcl.2014.11.045
  23. Sun J, Zhang C, Kim M et al (2018) Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice. BMB Rep 51, 200-205 https://doi.org/10.5483/BMBRep.2018.51.4.236
  24. Ryu D, Jo YS, Lo Sasso G et al (2014) A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab 20, 856-869 https://doi.org/10.1016/j.cmet.2014.08.001
  25. Addicks GC, Zhang H, Ryu D et al (2022) GCN5 maintains muscle integrity by acetylating YY1 to promote dystrophin expression. J Cell Biol 221, e202104022
  26. Hwangbo H, Lee H, Jin EJ et al (2022) Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater 8, 57-70 https://doi.org/10.1016/j.bioactmat.2021.06.031