DOI QR코드

DOI QR Code

A Study on the Hydrogen Degradation of HDPE by Hydrogen Pressure of 90 MPa

90 MPa의 수소 압력에 의한 HDPE의 수소 열화 연구

  • MINA KIM (Department of Chemical Engineering, Chosun University Graduate School) ;
  • CHANG HOON LEE (Department of Biochemical Engineering, Chosun University)
  • 김민아 (조선대학교 대학원 화학공학과) ;
  • 이창훈 (조선대학교 생명화학공학과)
  • Received : 2023.04.20
  • Accepted : 2023.06.15
  • Published : 2023.06.30

Abstract

The physical and chemical changes exhibited by high density polyethylene (HDPE) after treatment with hydrogen at a pressure of 90 MPa followed by rapid release of the hydrogen were studied. X-ray diffraction, differential scanning calorimetry, thermo gravimetric analysis, and attenuated total reflectance (ATR)-fourier transform infrared (FTIR) were used for this purpose. As a result, it was found that the degree of crystallinity of HDPE decreased after hydrogen pressure treatment, while the average thickness of lamellae that constitute the crystals and the melting temperature of the crystalline region actually increased. The decomposition temperature also increased by about 3℃. In addition, it was found that the hydrogen bonding network between -OH groups in the HDPE sample was strengthened and partial chain scission occurred. These cut chains were found to be terminated by oxidative degradation such as cross-linking between chains, -C=O, -C-O, and -CHO, or by the formation of -CH3 at the chain ends, as confirmed by ATR-FTIR.

Keywords

Acknowledgement

This study was supported by research fund from Chosun University, 2022.

References

  1. H. Barthelemy, M. Weber, and F. Barbier, "Hydrogen storage: recent improvements and industrial perspectives", International Journal of Hydrogen Energy, Vol. 42, No. 11, 2017, pp. 7254-7262, doi: https://doi.org/10.1016/j.ijhydene.2016.03.178.
  2. R. Moradi and K. M. Groth, "Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis", International Journal of Hydrogen Energy, Vol. 44, No. 23, 2019, pp. 12254-12269, doi: https://doi.org/10.1016/j.ijhydene.2019.03.041.
  3. J. P. B. Ramirez, D. Halm, J. C. Grandidier, S. Villalonga, and F. Nony, "700 bar type IV high pressure hydrogen storage vessel burst - simulation and experimental validation", International Journal of Hydrogen Energy, Vol. 40, No. 38, 2015, pp. 13183-13192, doi: https://doi.org/10.1016/j.ijhydene.2015.05.126.
  4. T. A. Yersak, D. R. Baker, Y. Yanagisawa, S. Slavik, R. Immel, A. Mack-Gardner, M. Herrmann, and M. Cai, "Predictive model for depressurization-induced blistering of type IV tank liners for hydrogen storage", International Journal of Hydrogen Energy, Vol. 42, No. 48, 2017, pp. 28910-28917, doi: https://doi.org/10.1016/j.ijhydene.2017.10.024.
  5. H. Ono, H. Fujiwara, K. Onoue, and S. Nishimura, "Influence of repetitions of the high-pressure hydrogen gas exposure on the internal damage quantity of high-density polyethylene evaluated by transmitted light digital image", International Journal of Hydrogen Energy, Vol. 44, No. 41, 2019, pp. 23303-23319, doi: https://doi.org/10.1016/j.ijhydene.2019.07.035.
  6. S. S. Kulkarni, K. S. Choi, W. Kuang, N. Menon, B. Mills, A. Soulami, and K. Simmons, "Damage evolution in polymer due to exposure to high-pressure hydrogen gas", International Journal of Hydrogen Energy, Vol. 46, No. 36, 2021, pp. 19001-19022, doi: https://doi.org/10.1016/j.ijhydene.2021.03.035.
  7. J. K. Jung, I. G. Kim, K. T. Kim, K. S. Ryu, and K. S. Chung, "Evaluation techniques of hydrogen permeation in sealing rubber materials", Polymer Testing, Vol. 93, 2021, pp. 1070 16, doi: https://doi.org/10.1016/j.polymertesting.2020.107016.
  8. A. Monshi, M. R. Foroughi, and M. R. Monshi, "Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD", World Journal of Nano Science and Engineering, Vol. 2, No. 3, 2012, pp. 154-160, doi: https://doi.org/10.4236/wjnse.2012.23020.
  9. A. M. Hindeleh and D. J. Johnson, "The resolution of multi-peak data in fibre science", Journal of Physics D: Applied Physics, Vol. 4, No. 2, 1971, pp. 259, doi: https://doi.org/10.1088/0022-3727/4/2/311.
  10. S. Aggarwal, M. Sajwan, and R. B. Singh, "Crystallinity of HDPE pipes by DSC, XRD and FTIR spectroscopy - A forensic comparison", Indian Journal of Criminology and Criminalistics, Vol. 29, 2008, pp. 141-148. Retrieved from https://www.researchgate.net/profile/Ran-Singh/publication/320701427_Crystallinity_of_HDPE_Pipes_by_DSC_XRD_and_FTIR_Spectroscopy_-_A_Forensic_Comparison/links/5a019d620f7e9bfd745baccf/Crystallinity-of-HDPE-Pipes-by-DSC-XRD-and-FTIR-Spectroscopy-A-Forensic-Comparison.pdf.
  11. B. Wunderlich and G. Czornyj, "A study of equilibrium melting of polyethylene", Macromolecules, Vol. 10, No. 5, 1977, pp. 906-913, doi: https://doi.org/10.1021/ma60059a006.
  12. G. Zerbi, G. Gallino, N. D. Fanti, and L. Baini, "Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy", Polymer, Vol. 30, No. 12, 19 89, pp. 2324-2327, doi: https://doi.org/10.1016/0032-3861(89)90269-3.
  13. L. Fontana, D. Q. Vinh, M. Santoro, S. Scandolo, F. A. Gorelli, R. Bini, and M. Hanfland, "High-pressure crystalline polyethylene studied by x-ray diffraction and ab initio simulations", Physical Review B, Vol. 75, No. 17, 2007, pp. 174112, doi: https://doi.org/10.1103/PhysRevB.75.174112.
  14. D. M. Dattelbaum, E. D. Emmons, A. M. Covington, L. L. Stevens, N. Velisavljevic, and B. Branch, "High-pressure X-ray diffraction and vibrational spectroscopy of polyethylene: evidence for a structural phase transition", Vibrational Spectroscopy, Vol. 111, 2020, pp. 103173, doi: https://doi.org/10.1016/j.vibspec.2020.103173.
  15. Y. Zheng, Y. Tan, C. Zhou, G. Chen, J. Li, Y. Liu, B. Liao, and G. Zhang, "A review on effect of hydrogen on rubber seals used in the high-pressure hydrogen infrastructure", International Journal of Hydrogen Energy, Vol. 45, No. 43, 2020, pp. 23721-23738, doi: https://doi.org/10.1016/j.ijhydene.2020.06.069.
  16. M. Fazal, S. Castagnet, A. Nait-Ali, and S. Nishimura, "Local kinetics of cavitation in hydrogen-exposed EPDM using insitu X-ray tomography: focus on free surface effect and cavity interaction", Polymer Testing, Vol. 91, 2020, pp. 106723, doi: https://doi.org/10.1016/j.polymertesting.2020.106723.
  17. J. Yamabe and S. Nishimura, "Nanoscale fracture analysis by atomic force microscopy of EPDM rubber due to highpressure hydrogen decompression", Journal of Materials Science, Vol. 46, No. 7, 2011, pp. 2300-2307, doi: https://doi.org/10.1007/s10853-010-5073-4.
  18. H. Ono, A. Nait-Ali, O. K. Diallo, G. Benoit, and S. Castagnet, "Influence of pressure cycling on damage evolution in an unfilled EPDM exposed to high-pressure hydrogen", International Journal of Fracture, Vol. 210, No. 1-2, 2018, pp. 137-152, doi: https://doi.org/10.1007/s10704-018-0266-y.
  19. X. P. Morelle, G. E. Sanoja, S. Castagnet, and C. Creton, "3D fluorescent mapping of invisible molecular damage after cavitation in hydrogen exposed elastomers", Soft Matter, Vol. 17, No. 16, 2021, pp. 4266-4274, doi: https://doi.org/10.1039/D1SM00325A.
  20. J. V. Gulmine, P. R. Janissek, H. M. Heise, and L. Akcelrud, "Polyethylene characterization by FTIR", Polymer Testing, Vol. 21, No. 5, 2002, pp. 557-563, doi: https://doi.org/10.1016/S0142-9418(01)00124-6.
  21. D. J. da Silva and H. Wiebeck, "ATR-FTIR spectroscopy combined with chemometric methods for the classification of polyethylene residues containing different contaminants", Journal of Polymers and the Environment, Vol. 30, No. 7, 20 22, pp. 3031-3044, doi: https://doi.org/10.1007/s10924-022-02396-3.
  22. O. M. Dogan and I. Kayacan, "Pyrolysis of low and high density polyethylene. part ii: analysis of liquid products using FTIR and NMR spectroscopy", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 30, No. 5, 2008, pp. 392-400, doi: https://doi.org/10.1080/15567030701457152.
  23. I. Mouallif, A. Latrach, M. Chergui, A. Benali, and N. Barbe, "FTIR study of HDPE structural changes, moisture absorption and mechanical properties variation when exposed to sulphuric acid aging in various temperatures", 20eme Congres Francais de Mecanique, 2011, pp. 1-7. Retrieved from https://hal.science/hal-03420950/document. 1-7.
  24. J. Charles and G. R. Ramkumaar, "Qualitative analysis of high density polyethylene using FTIR spectroscopy", Asian Journal of Chemistry, Vol. 21, No. 6, 2009, pp. 4477-4484. Retrieved from https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=21_6_52.
  25. A. Alsabbagh, R. A. Saleem, R. Almasri, S. Aljarrah, and S. Awad, "Effects of gamma irradiation on 3D-printed poly-lactic acid (PLA) and high-density polyethylene (HDPE)", Polymer Bulletin, Vol. 78, No. 9, 2021, pp. 4931-4945, doi: https://doi.org/10.1007/s00289-020-03349-3.
  26. M. Fonouni, R. Yegani, S. Anarjani, and A. Tavakoli, "Antifouling behaviors of surface functionalized high density polyethylene membrane in microfiltration of bovine serum albumin protein", Polyolefins Journal, Vol. 4, No. 1, 2017, pp. 13-26, doi: https://doi.org/10.22063/POJ.2016.1343.
  27. S. K. Mallapragada and B. Narasimhan, "Infrared spectroscopy in analysis of polymer crystallinity", Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation, 2006, doi: https://doi.org/10.1002/9780470027318.a2012.