DOI QR코드

DOI QR Code

RUNX1 Ameliorates Rheumatoid Arthritis Progression through Epigenetic Inhibition of LRRC15

  • Hao Ding (Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University) ;
  • Xiaoliang Mei (Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nanjing Medical University) ;
  • Lintao Li (Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University) ;
  • Peng Fang (Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University) ;
  • Ting Guo (Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University) ;
  • Jianning Zhao (Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University)
  • Received : 2022.08.31
  • Accepted : 2022.11.26
  • Published : 2023.04.30

Abstract

Leucine-rich repeat containing 15 (LRRC15) has been identified as a contributing factor for cartilage damage in osteoarthritis; however, its involvement in rheumatoid arthritis (RA) and the underlying mechanisms have not been well characterized. The purpose of this study was to explore the function of LRRC15 in RA-associated fibroblast-like synoviocytes (RA-FLS) and in mice with collagen-induced arthritis (CIA) and to dissect the epigenetic mechanisms involved. LRRC15 was overexpressed in the synovial tissues of patients with RA, and LRRC15 overexpression was associated with increased proliferative, migratory, invasive, and angiogenic capacities of RA-FLS and accelerated release of pro-inflammatory cytokines. LRRC15 knockdown significantly inhibited synovial proliferation and reduced bone invasion and destruction in CIA mice. Runt-related transcription factor 1 (RUNX1) transcriptionally represses LRRC15 by binding to core-binding factor subunit beta (CBF-β). Overexpression of RUNX1 significantly inhibited the invasive phenotype of RA-FLS and suppressed the expression of proinflammatory cytokines. Conversely, the effects of RUNX1 were significantly reversed after overexpression of LRRC15 or inhibition of RUNX1-CBF-β interactions. Therefore, we demonstrated that RUNX1-mediated transcriptional repression of LRRC15 inhibited the development of RA, which may have therapeutic effects for RA patients.

Keywords

References

  1. Ai, R., Laragione, T., Hammaker, D., Boyle, D.L., Wildberg, A., Maeshima, K., Palescandolo, E., Krishna, V., Pocalyko, D., Whitaker, J.W., et al. (2018). Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921.
  2. Alabarse, P.V.G., Lora, P.S., Silva, J.M.S., Santo, R.C.E., Freitas, E.C., de Oliveira, M.S., Almeida, A.S., Immig, M., Teixeira, V.O.N., Filippin, L.I., et al. (2018). Collagen-induced arthritis as an animal model of rheumatoid cachexia. J. Cachexia Sarcopenia Muscle 9, 603-612. https://doi.org/10.1002/jcsm.12280
  3. Aletaha, D., Neogi, T., Silman, A.J., Funovits, J., Felson, D.T., Bingham, C.O., 3rd, Birnbaum, N.S., Burmester, G.R., Bykerk, V.P., Cohen, M.D., et al. (2010). 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580-1588. https://doi.org/10.1136/ard.2010.138461
  4. Bevaart, L., Vervoordeldonk, M.J., and Tak, P.P. (2010). Collagen-induced arthritis in mice. Methods Mol. Biol. 602, 181-192. https://doi.org/10.1007/978-1-60761-058-8_11
  5. Chan, W.C.W., Tan, Z., To, M.K.T., and Chan, D. (2021). Regulation and role of transcription factors in osteogenesis. Int. J. Mol. Sci. 22, 5445.
  6. Chen, Y.J., Chang, W.A., Hsu, Y.L., Chen, C.H., and Kuo, P.L. (2017). Deduction of novel genes potentially involved in osteoblasts of rheumatoid arthritis using next-generation sequencing and bioinformatic approaches. Int. J. Mol. Sci. 18, 2396.
  7. Chen, Y.J., Chang, W.A., Wu, L.Y., Hsu, Y.L., Chen, C.H., and Kuo, P.L. (2018). Systematic analysis of transcriptomic profile of chondrocytes in osteoarthritic knee using next-generation sequencing and bioinformatics. J. Clin. Med. 7, 535.
  8. Cui, J., Dean, D., Wei, R., Hornicek, F.J., Ulmert, D., and Duan, Z. (2020). Expression and clinical implications of leucine-rich repeat containing 15 (LRRC15) in osteosarcoma. J. Orthop. Res. 38, 2362-2372. https://doi.org/10.1002/jor.24848
  9. Cunningham, L., Finckbeiner, S., Hyde, R.K., Southall, N., Marugan, J., Yedavalli, V.R., Dehdashti, S.J., Reinhold, W.C., Alemu, L., Zhao, L., et al. (2012). Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proc. Natl. Acad. Sci. U. S. A. 109, 14592-14597. https://doi.org/10.1073/pnas.1200037109
  10. de Bruijn, M.F. and Speck, N.A. (2004). Core-binding factors in hematopoiesis and immune function. Oncogene 23, 4238-4248. https://doi.org/10.1038/sj.onc.1207763
  11. Galligan, C.L., Baig, E., Bykerk, V., Keystone, E.C., and Fish, E.N. (2007). Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: correlates with disease activity. Genes Immun. 8, 480-491. https://doi.org/10.1038/sj.gene.6364400
  12. Ganesan, R. and Rasool, M. (2017). Fibroblast-like synoviocytes-dependent effector molecules as a critical mediator for rheumatoid arthritis: current status and future directions. Int. Rev. Immunol. 36, 20-30. https://doi.org/10.1080/08830185.2016.1269175
  13. Korinfskaya, S., Parameswaran, S., Weirauch, M.T., and Barski, A. (2021). Runx transcription factors in T cells-what is beyond thymic development? Front. Immunol. 12, 701924.
  14. Malik, N., Yan, H., Moshkovich, N., Palangat, M., Yang, H., Sanchez, V., Cai, Z., Peat, T.J., Jiang, S., Liu, C., et al. (2019). The transcription factor CBFB suppresses breast cancer through orchestrating translation and transcription. Nat. Commun. 10, 2071.
  15. Manferdini, C., Paolella, F., Gabusi, E., Silvestri, Y., Gambari, L., Cattini, L., Filardo, G., Fleury-Cappellesso, S., and Lisignoli, G. (2016). From osteoarthritic synovium to synovial-derived cells characterization: synovial macrophages are key effector cells. Arthritis Res. Ther. 18, 83.
  16. Ospelt, C., Gay, S., and Klein, K. (2017). Epigenetics in the pathogenesis of RA. Semin. Immunopathol. 39, 409-419. https://doi.org/10.1007/s00281-017-0621-5
  17. Ray, U., Pathoulas, C.L., Thirusangu, P., Purcell, J.W., Kannan, N., and Shridhar, V. (2022). Exploiting LRRC15 as a novel therapeutic target in cancer. Cancer Res. 82, 1675-1681. https://doi.org/10.1158/0008-5472.CAN-21-3734
  18. Rivellese, F. and Pitzalis, C. (2021). Cellular and molecular diversity in Rheumatoid Arthritis. Semin. Immunol. 58, 101519.
  19. Sandhu, G. and Thelma, B.K. (2022). New druggable targets for rheumatoid arthritis based on insights from synovial biology. Front. Immunol. 13, 834247.
  20. Satoh, K., Hata, M., Shimizu, T., Yokota, H., Akatsu, H., Yamamoto, T., Kosaka, K., and Yamada, T. (2005). Lib, transcriptionally induced in senile plaque-associated astrocytes, promotes glial migration through extracellular matrix. Biochem. Biophys. Res. Commun. 335, 631-636. https://doi.org/10.1016/j.bbrc.2005.07.117
  21. Singh, P., Wang, M., Mukherjee, P., Lessard, S.G., Pannellini, T., Carballo, C.B., Rodeo, S.A., Goldring, M.B., and Otero, M. (2021). Transcriptomic and epigenomic analyses uncovered Lrrc15 as a contributing factor to cartilage damage in osteoarthritis. Sci. Rep. 11, 21107.
  22. Slemmons, K.K., Mukherjee, S., Meltzer, P., Purcell, J.W., and Helman, L.J. (2021). LRRC15 antibody-drug conjugates show promise as osteosarcoma therapeutics in preclinical studies. Pediatr. Blood Cancer 68, e28771.
  23. Smolen, J.S., Aletaha, D., Barton, A., Burmester, G.R., Emery, P., Firestein, G.S., Kavanaugh, A., McInnes, I.B., Solomon, D.H., Strand, V., et al. (2018). Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001.
  24. van Hamburg, J.P. and Tas, S.W. (2018). Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J. Autoimmun. 87, 69-81. https://doi.org/10.1016/j.jaut.2017.12.006
  25. Wu, Z., Ma, D., Yang, H., Gao, J., Zhang, G., Xu, K., and Zhang, L. (2021). Fibroblast-like synoviocytes in rheumatoid arthritis: surface markers and phenotypes. Int. Immunopharmacol. 93, 107392.
  26. Xiao, L., Yang, Z., and Lin, S. (2022). Identification of hub genes and transcription factors in patients with rheumatoid arthritis complicated with atherosclerosis. Sci. Rep. 12, 4677.
  27. Yang, Y., Wu, H., Fan, S., Bi, Y., Hao, M., and Shang, J. (2022). Cancerassociated fibroblastderived LRRC15 promotes the migration and invasion of triplenegative breast cancer cells via Wnt/betacatenin signalling pathway regulation. Mol. Med. Rep. 25, 2.
  28. You, S., Koh, J.H., Leng, L., Kim, W.U., and Bucala, R. (2018). The tumor-like phenotype of rheumatoid synovium: molecular profiling and prospects for precision medicine. Arthritis Rheumatol. 70, 637-652. https://doi.org/10.1002/art.40406
  29. Zhang, X.P., Ma, J.D., Mo, Y.Q., Jing, J., Zheng, D.H., Chen, L.F., Wu, T., Chen, C.T., Zhang, Q., Zou, Y.Y., et al. (2021). Addition of fibroblast-stromal cell markers to immune synovium pathotypes better predicts radiographic progression at 1 year in active rheumatoid arthritis. Front. Immunol. 12, 778480.