DOI QR코드

DOI QR Code

Comparison of shear bond strength between hard relining material and 3D-printing denture base resin containing silica micro-gel

실리카 마이크로겔을 첨가한 3D프린팅 의치상 레진과 경성 이장재 간의 전단 접착강도 비교 연구

  • Yeon-Woo Lee (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Young-Gyun Song (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 이연우 (단국대학교 치과대학 치과보철학교실) ;
  • 송영균 (단국대학교 치과대학 치과보철학교실)
  • Received : 2023.05.22
  • Accepted : 2023.06.05
  • Published : 2023.06.30

Abstract

Purpose: Various methods have been attempted to overcome limitations of physical characteristics of 3D-printed dentures; among them a novel method of increasing fracture strength by adding fine particles into the resin has been found to be effective. However, there are still limited research on the effect of these particles on the bond strength between the printed resin and denture relining materials. The purpose of this study is to compare the shear bond strength between the 3D-printing denture base resin and various relining materials when micro-particles on the surface of the resin are removed. Materials and Methods: 63 ㎛-sized silica microgels were mixed into 3D-printing denture base resin to make groups of weight ratio of 2 wt% and 3 wt%. After printing all 3 groups, including the control group, an HF etching solution was applied to dissolve the silica micro-particles on the surface. Three kinds of relining materials, Tokuyama Rebase II normal, KOOLINER, and ProBase Cold were attached to the surface. The shear bond strength values and the failure modes for each group were analyzed. Results: The shear bond strength showed the largest average value in the control group, in which silica was not mixed, among all three relining materials. Also, there were significant differences between specimens with different weight ratios. The largest value was measured in ProBase Cold, and the main failure mode was adhesive failure in all groups. Conclusion: The shear bond strength was significantly reduced when the silica micro-particles on the surface were removed from the 3D printing denture base resin.

목적: 현재 3D 프린팅을 통한 총의치의 제작은 적층 제조의 특성상 물리적 특성의 한계점들이 존재한다. 이를 극복하기 위한 여러 방법들 중 레진에 미세입자를 첨가해 강도를 높이는 방법이 유효하다고 밝혀졌다. 이에 본 연구에서는 3D 프린팅 레진 의치상의 표면에 존재하는 미세입자를 제거했을 때 의치상 레진과 이장 재료 간의 전단 접착강도를 비교 분석하기 위해 실험을 진행하였다. 연구 재료 및 방법: 63 ㎛ 크기의 실리카 마이크로겔을 3D 프린팅 의치상용 레진에 2 wt%, 3 wt% 중량비로 혼합하고, 대조군을 포함한 세 중량비의 레진을 원기둥 형태로 출력하였다. 표면의 실리카 입자를 용해시키기 위해 에칭 용액을 적용하고, Tokuyama Rebase II normal, KOOLINER, ProBase Cold의 세 재료를 원통형 모양으로 부착한 다음 전단 접착강도를 측정하고 중량비에 따른 유의차를 평가하였다. 또한 파절 양상을 입체현미경으로 관찰하였다. 결과: 전단 접착강도는 세 레진 모두 실리카가 혼합되지 않은 대조군에서 가장 큰 평균값을 보였으며, 중량비 간에는 접착 강도의 유의한 차이가 존재하였다. 간접법 첨상용 레진인 ProBase Cold에서 가장 큰 값의 강도가 측정되었고, 모든 군에서 파절 양상은 접착성 파절이 주로 일어났다. 결론: 실리카 마이크로겔을 첨가한 3D 프린팅 의치상 레진에서 표면의 실리카를 용해하고 이장용 레진을 접착했을 때, 전단 접착강도가 유의하게 감소하였다.

Keywords

References

  1. Faty MA, Sabet ME, Thabet YG. A comparison of denture base retention and adaptation between CAD-CAM and conventional fabrication techniques. Int J Prosthodont 2022 Sep 22. doi: 10.11607/ijp.7193. Online ahead of print. 
  2. Goodacre CJ, Garbacea A, Naylor WP, Daher T, Marchack CB, Lowry J. CAD/CAM fabricated complete dentures: concepts and clinical methods of obtaining required morphological data. J Prosthet Dent 2012;107:34-46.  https://doi.org/10.1016/S0022-3913(12)60015-8
  3. Kattadiyil MT, AlHelal A. An update on computer-engineered complete dentures: A systematic review on clinical outcomes. J Prosthet Dent 2017;117:478-85.  https://doi.org/10.1016/j.prosdent.2016.08.017
  4. Dimitrova M, Corsalini M, Kazakova R, Vlahova A, Chuchulska B, Barile G, Capodiferro S, Kazakov S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J Compos Sci 2022;6:87. 
  5. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing - the fututre in dental care for elderly edentulous patients? J Dent 2017;59:68-77.  https://doi.org/10.1016/j.jdent.2017.02.012
  6. Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. J Prosthet Dent 2003;89:427-35.  https://doi.org/10.1016/S0022-3913(03)00158-6
  7. Cho SY, Song YG. A comparison study on shear bond strength of 3D printed resin and conventional heat-cured denture base resin to denture relining materials. J Dent Rehabil Appl Sci 2021;37:232-43.  https://doi.org/10.14368/jdras.2021.37.4.232
  8. Koseoglu M, Tugut F, Akin H. Tensile bond strength of soft and hard relining materials to conventional and additively manufactured denture-base materials. J Prosthodont 2023;32:74-80.  https://doi.org/10.1111/jopr.13608
  9. Kim HS, Jung JH, Bae JM, Kim JM, Kim YL. Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing. J Korean Acad Prosthodont 2020;58:177-84.  https://doi.org/10.4047/jkap.2020.58.3.177
  10. Gad MM, Rahoma A, Abualsaud R, Al-Thobity AM, Akhtar S, Helal MA, Al-Harbi FA. Impact of different surface treatments and repair material reinforcement on the flexural strength of repaired PMMA denture base material. Dent Mater J 2020;39:471-82.  https://doi.org/10.4012/dmj.2018-436
  11. Jeong JW, Song YG. Investigation of effect of zirconia on osseointegration by surface treatments. J Dent Rehabil Appl Sci 2021;37:23-30.  https://doi.org/10.14368/jdras.2021.37.1.23
  12. Wang C, Shi YF, Xie PJ, Wu JH. Accuracy of digital complete dentures: A systematic review of in vitro studies. J Prosthet Dent 2021;125:249-56.  https://doi.org/10.1016/j.prosdent.2020.01.004
  13. Awad AN, Cho SH, Kesterke MJ, Chen JH. Comparison of tensile bond strength of denture reline materials on denture bases fabricated with CAD-CAM technology. J Prosthet Dent 2023;129:616-22.  https://doi.org/10.1016/j.prosdent.2021.06.047
  14. Mutluay MM, Ruyter IE. Evaluation of adhesion of chairside hard relining materials to denture base polymers. J Prosthet Dent 2005;94:445-52.  https://doi.org/10.1016/j.prosdent.2005.08.011
  15. Palitsch A, Hannig M, Ferger P, Balkenhol M. Bonding of acrylic denture teeth to MMA/PMMA and light-curing denture base materials: the role of conditioning liquids. J Dent 2012;40:210-21.  https://doi.org/10.1016/j.jdent.2011.12.010
  16. Wemken G, Burkhardt F, Spies BC, Kleinvogel L, Adali U, Sterzenbach G, Beuer F, Wesemann C. Bond strength of conventional, subtractive, and additive manufactured denture bases to soft and hard relining materials. Dent Mater 2021;37:928-38.  https://doi.org/10.1016/j.dental.2021.02.018
  17. Khaled SM, Sui R, Charpentier PA, Rizkalla AS. Synthesis of TiO2-PMMA Nanocomposite: Using Methacrylic Acid as a Coupling Agent. Langmuir 2007;23:3988-95.  https://doi.org/10.1021/la062879n
  18. Alshaikh AA, Khattar A, Almindil IA, Alsaif MH, Akhtar S, Khan SQ, Gad MM. 3D-Printed Nanocomposite Denture-Base Resins: Effect of ZrO2 Nanoparticles on the Mechanical and Surface Properties In Vitro. Nanomaterials (Basel) 2022;12:2451. 
  19. Aati S, Aneja S, Kassar M, Leung R, Nguyen A, Tran S, Shrestha B, Fawzy A. Silver-loaded mesoporous silica nanoparticles enhanced the mechanical and antimicrobial properties of 3D printed denture base resin. J Mech Behav Biomed Mater 2022;134:105421. 
  20. Gad MM, Al-Harbi FA, Akhtar S, Fouda SM. 3D-Printable Denture Base Resin Containing SiO2 Nanoparticles: An In Vitro Analysis of Mechanical and Surface Properties. J Prosthodont 2022;31:784-90.  https://doi.org/10.1111/jopr.13483
  21. Alkurt M, Yesil Duymus Z, Gundogdu M. Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin. J Prosthet Dent 2014;111:71-8.  https://doi.org/10.1016/j.prosdent.2013.09.007
  22. Park SJ, Lee JS. Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base. J Adv Prosthodont 2022;14:262-72.  https://doi.org/10.4047/jap.2022.14.4.262
  23. Cevik P, Yildirim-Bicer AZ. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J Prosthodont 2018;27:763-70.  https://doi.org/10.1111/jopr.12573
  24. Qi DM, Bao YZ, Weng ZX, Huang ZM. Preparation of acrylate polymer/silica nanocomposite particles with high silica encapsulation efficiency via miniemulsion polymerization. Polymer 2006;47:4622-9.  https://doi.org/10.1016/j.polymer.2006.04.024
  25. Spierings G. Wet chemical etching of silicate glasses in hydrofluoric acid based solutions. J Mater Sci 1993;28:6261-73.  https://doi.org/10.1007/BF01352182
  26. Donmez MB, Okutan Y, Yucel MT. Effect of prolonged application of single-step self-etching primer and hydrofluoric acid on the surface roughness and shear bond strength of CAD/CAM materials. Eur J Oral Sci 2020;128:542-9.  https://doi.org/10.1111/eos.12747
  27. Quaas AC, Yang B, Kern M. Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. Dent Mater 2007;23:506-12.  https://doi.org/10.1016/j.dental.2006.03.008
  28. Jeong KW, Kim SH. Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations. J Adv Prosthodont 2019;11:95-104.  https://doi.org/10.4047/jap.2019.11.2.95
  29. Lim NK, Shin SY. Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins. J Adv Prosthodont 2020;12:322-8.  https://doi.org/10.4047/jap.2020.12.5.322
  30. Qaw MS, Abushowmi TH, Almaskin DF, AlZaher ZA, Gad MM, Al-Harbi FA, Abualsaud R, Ammar MM. A Novel Approach to Improve Repair Bond Strength of Repaired Acrylic Resin: An in Vitro Study on the Shear Bond Strength. J Prosthodont 2020;29:323-33.  https://doi.org/10.1111/jopr.12970
  31. Silva Cde S, Machado AL, Chaves Cde A, Pavarina AC, Vergani CE. Effect of thermal cycling on denture base and autopolymerizing reline resins. J Appl Oral Sci 2013;21:219-24. https://doi.org/10.1590/1679-775720130061