DOI QR코드

DOI QR Code

알파음악 청취가 좌우뇌의 α-파워와 비율 및 우울 정도에 미치는 영향

The effects of Alpha Music Listening on Left and Right Brain α-Power and Ratio, and Depression

  • 전경희 (전남과학대학교 물리치료과)
  • Kyoung Hee Jun (Dept. of Physical Therapy, Chunnam-Techno Univesity)
  • 투고 : 2022.08.09
  • 심사 : 2022.10.07
  • 발행 : 2023.06.30

초록

Background: This study was to investigate effect of alpha music listening on brain α-intensity and left-right ratio and changes in depression scale values. Decreased brain activity, forehead activity, or left and right brain imbalances are associated with depression. In the EEG study of depression, there are a number of previous studies that confirm the depressive symptoms by asymmetry of α-power or α-ratio. Design: Cross-sectional study. Methods: 35 adult men and women participated in this study. All subjects were randomly assigned, and alcohol or drug use was excluded from the experiment. After conducting a preliminary depression scale test, the first EEG test was performed in a stable state. After that, a second EEG test was performed for the last 3 minutes while listening to alpha-induced music for 5 minutes. After that, the depression scale test was performed again and the results were analyzed. Results: The results were as follows. First, the feeling of depression decreased after listening to alpha-induced music in the entire group (P<0.001). Second, There was no difference in α-power and α-ratio in the left and right corresponding areas in the stable state of all subjects in the EEG measurement(P>0.001). Third, in the analysis of all subjects, α-power and α-ratio increased in F4, T4 and P3 after listening to alpha music. And the α-power and α-ratio increased in the Fp2 domain of the depressed subjects and the F4 and T4 domains of the normal subjects (P<0.001). Conclusions: These results suggest that listening to alpha-induced music affects the reduction of depression by increasing right brain α power and α appearance ratio.

키워드

참고문헌

  1. 김정민과 정유창. 명상음악이 심리적 안정감과 인체 에너지장에 미치는 영향. 인성교육연구, 2019;4(2):15~32. https://doi.org/10.46227/JCER.4.2.2
  2. 문서란과 최병철. 노래활동이 뇌의 주의집중도와 뇌 활성량 변화에 미치는 영향. 한국음악치료학회, 2016;18(1):1~33 https://doi.org/10.21330/kjmt.2016.18.1.1
  3. 서경현, 박정양, 이재구, 음악이 스트레스로부터의 심혈관계 반응과 정서반응 회복에 미치는 영향, 한국건강심리학회지, 2007;12(2):395-409 https://doi.org/10.17315/kjhp.2007.12.2.007
  4. 신승철, 김만권, 윤관수, 김진학, 이명선, 문수재, 이민준, 이호영, 유계준, 한국에서의 the Center for Epidemiological Studies-Depression Scale(CES-D)의 사용, 신경정신의학회, 1991;30(4):752-767
  5. 오미주, 교도소 오케스트라 음악 프로그램 수강 재소자들의 자아존중감 및 정서와 긍정적 삶의 관계, 문화예술교육연구, 2020;15(3):161~186 https://doi.org/10.15815/KJCAES.2020.15.3.161
  6. 이영신, 김상엽, 침찬규, 정대인, 김경윤, 뉴로피드백 훈련이 만성 뇌졸중 환자의 뇌파활성도와 인지수행력에 미치는 효과. 한국산학기술학회, 2013;14(5):2329-2337. https://doi.org/10.5762/KAIS.2013.14.5.2329
  7. 이윤영 "음악적 정보가 감상자의 기분반응과 선호도에 미치는 영향" 명지대학교 사회교육대학원; 석사논문, 2002
  8. 이충휘, 물리치료사와 작업치료사를 위한 연구방법론, 계축문화사, 서울, 2020
  9. 정유라와 장연석, 음악적 자극에 의한 뇌활성도의 통계적 해석, JKIECS, 2021;16(01):89-94,
  10. 추정숙, 이승환, 정영조, 우울과 불안의 뇌 기능. 대한불안의학회지, 2008;4(1):3-10.
  11. 최남숙, 임기용, 정철우 등, 한국산학기술학회, 2017;18(5):608-616 https://doi.org/10.5762/KAIS.2017.18.5.608
  12. Acharya UR, Oh SL, Hagiwara Y et al. Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed 2018;161:103-113. https://doi.org/10.1016/j.cmpb.2018.04.012
  13. Anand A, Li Y, Wang Y et al. Activity and connectivity of brain mood regulating circuit in depression: a functioꠓnal magnetic resonance study. Biol Psychiatry 2005;15(57):1079-1088. https://doi.org/10.1016/j.biopsych.2005.02.021
  14. Austin MP, Dougall N, Ross M et al. Single photon emission tomography with 99mTc-exametazime in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. J Affect Disord 1992;26:31-43. https://doi.org/10.1016/0165-0327(92)90032-2
  15. Bench CJ, Friston KJ, Brown RG et al. Regioꠓnal cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 1993;23:579-590. https://doi.org/10.1017/S0033291700025368
  16. Brody AL, Barsom MW, Bota RG et al. Prefrontal-subcortical and limbic circuit mediation of major depressive disorder. Semin Clin Neuropsychiatry 2001;6:102-112. https://doi.org/10.1053/scnp.2001.21837
  17. Bruder GE, Stewart JW, McGrath PJ. Right brain, left brain in depressive disorders:clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neurosci. Biobehav. Rev 2017;78:178-191. https://doi.org/10.1016/j.neubiorev.2017.04.021
  18. Cai H, Sha X, Han X et al. Pervasive EEG diagnosis of depression using Deep Belief Network with three-electrodes EEG collector. Proceedings- 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016:1239-46.
  19. Davidson RJ & Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci 1999;3:11-21. https://doi.org/10.1016/S1364-6613(98)01265-0
  20. de Aguiar Neto FS, Rosa JLG. Depression biomarkers using non-invasive EEG: A review. Neuroscience & Biobehavioral Reviews 2019;10(5):83-93. https://doi.org/10.1016/j.neubiorev.2019.07.021
  21. Dolsen MR, Cheng P, Arned, JT et al. Casement MD, Kim HS, Goldschmied JR, Hoffmann RF, Armitage R, Deldin PJ. Neurophysiological correlates of suicidal ideation in major depressive disorder: hyperarousal during sleep. J. Affect. Disord 2017;212:160-166. https://doi.org/10.1016/j.jad.2017.01.025
  22. Fitzgerald PJ, Watson BO. Gamma oscillations as a biomarker for major deꠓpression: an emerging topic. Transl. Psychiatry 2018;8(1):177.
  23. Gagnon, L., & Peretz, I., Mode and tempo relative contributions to "happy-sad" judgements in equtione mequitone. Cognition and Emotion, 2003;17(1):25-40. https://doi.org/10.1080/02699930302279
  24. Grin-Yatsenko VA, Baas I, Ponomarev VA et al. Independent comꠓponent approach to the analysis of EEG recordings at early stages of depressive disꠓorders. Clin. Neurophysiol 2010;121(3):281-289. https://doi.org/10.1016/j.clinph.2009.11.015
  25. Hosseinifard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Programs Biomed 2013;109(3):339-345. https://doi.org/10.1016/j.cmpb.2012.10.008
  26. Jasper, HH., "Report of the committee on methods of clinical examination in electroencephalography". Electroencephalography and Clinical Neurophysiology. 1958;10(2):370-375. https://doi.org/10.1016/0013-4694(58)90053-1
  27. Jesulola E, Sharpley CF, Agnew LL. The effects of gender and depression seꠓverity on the association between alpha asymmetry and depression across four brainregions. Behav. Brain Res. 2017;321:232-239. https://doi.org/10.1016/j.bbr.2016.12.035
  28. Koo PC, Berger C, Kronenberg G et al. Combined cognitive, psychomotor and electrophysiological biomarkers in major depressive disorder. Eur. Arch. Psychiatry Clin. Neuroscience, 2019;269:823-832. https://doi.org/10.1007/s00406-018-0952-9
  29. Kolodziej A., Magnuski M , Ruban A., Brzezicka A., No relationship between frontal alpha asymmetry and depressive disorders in a multiverse analysis of five studies, eLife 2021;10e60595
  30. Lee PF, Kan DPX, Croarkin P et al. Neurophysiological correlates of depressive symptoms in young adults: a quantitativeEEG study. J. Clin. Neurosci 2018;47:315-322. https://doi.org/10.1016/j.jocn.2017.09.030
  31. Mohammadi M. Al-Azab F, Raahemi B et al. Data mining EEG signals in depression for their diagnostic value. Clinical decision-making, knowledge support systems, and theory. BMC Med. Inform. Decis. Mak 2015;15(1):1-14. https://doi.org/10.1186/s12911-015-0129-7
  32. Murata T, Suzuki R, Higuchi T et al. Regional cerebral blood flow in the patients with depressive disorders. Keio J Med 2000;49: A112-A113.
  33. Nusslock R, Shackman AJ, McMenamin BW et al. Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry. Psychophysiology 2018;55(1):e12953.
  34. Nusslock R, Walden K, Harmon-Jones E, Asymmetrical frontal cortical activity associated with differential risk for mood and anxiety disorder symptoms: an RDoC perspective. Int. J. Psychophysiology 2015;98(2):249-261. https://doi.org/10.1016/j.ijpsycho.2015.06.004
  35. Nelson BD, Kessel EM, Klein DN et al. Depression symptomdi- mensions and asymmetrical frontal cortical activity while anticipating reward. Psychophysiology 2018;55(1):e 12892.
  36. Pizzagalli DA & Roberts AC., Prefrontal cortex and depression. Neuropsychopharmacology. 2022;47(1):225-246. https://doi.org/10.1038/s41386-021-01101-7
  37. Smith EE, Cavanagh JF, Allen JJB, Intracranial source activity (eLORETA) related to scalp-level asymmetry scores and depression status. Psychophysiology 2018;55 (1):e13019.
  38. van der Vinne N, Vollebregt MA, van Putten MJ et al. Frontal alpha asymmetry as a diagnostic marker in depression: fact or fiction? A meta-analysis. NeuroImage Clin 2017;16:79-87. https://doi.org/10.1016/j.nicl.2017.07.006