DOI QR코드

DOI QR Code

Rapid Identification of Diaporthe citri by Gene Sequence Analysis

  • Zar Zar Soe (Sustainable Agriculture Research Institute, Jeju National University) ;
  • Yong Ho Shin (Sustainable Agriculture Research Institute, Jeju National University) ;
  • Hyun Su Kang (Sustainable Agriculture Research Institute, Jeju National University) ;
  • Mi Jin Kim (Sustainable Agriculture Research Institute, Jeju National University) ;
  • Yong Chull Jeun (Sustainable Agriculture Research Institute, Jeju National University)
  • Received : 2023.01.30
  • Accepted : 2023.04.04
  • Published : 2023.06.30

Abstract

Citrus melanoses caused by Diaporthe citri, has been one of the serious diseases in many citrus orchards of Jeju Island. To protect melanose in citrus farms, a fast and exact diagnosis method is necessary. In this study, diseased leaves and dieback twigs were collected from a total of 49 farms within March to April in 2022. A total of 465 fungal isolates were obtained from a total of 358 isolated plant samples. Among these fungal isolates, 40 representatives of D. citri isolates which were isolated from 22 twigs and 18 leaves on 23 farms were found based on cultural characteristics on potato dextrose agar and conidial morphology. Additionally, the molecular assay was carried out and compared with those by morphological diagnosis. All isolates were identified as D. citri by analyzing the sequences at the internal transcribed spacer (ITS) rDNA region using primers of ITS1/ITS4 or at β-tubulin using primer Btdcitri-F/R. Therefore, based on the present study, where the results of morphological identification of conidial type were consistent with DNA sequence analysis of certain gene, choosing a suitable method for a fast diagnosis of citrus melanose was suggested.

Keywords

Acknowledgement

This work was carried out with the support of 'Cooperative Research Program for Agriculture Science and Technology Development (PJ0169062023)' funded by Rural Development Administration, Republic of Korea.

References

  1. Aamir, S., Sutar, S., Singh, S. K. and Baghela, A. 2015. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol. Quar. 5: 74-81. https://doi.org/10.5943/ppq/5/2/6
  2. Anderson, I. C. and Cairney, J. W. G. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ. Microbiol. 6: 769-779. https://doi.org/10.1111/j.1462-2920.2004.00675.x
  3. Castlebury, L. 2005. The Diaporthe vaccinii complex of fruit pathogens. Inoculum 56: 12.
  4. Chaisiri, C., Liu, X.-Y., Lin, Y., Li, J.-B., Xiong, B. and Luo, C.-X. 2020. Phylogenetic analysis and development of molecular tool for detection of Diaporthe citri causing melanose disease of citrus. Plants 9: 329.
  5. Chaisiri, C., Liu, X., Lin, Y. and Luo, C. 2022. Diaporthe citri: a fungal pathogen causing melanose disease. Plants 11: 1600.
  6. Chase, M. W. and Fay, M. F. 2009. Barcoding of plants and fungi. Science 325: 682-683. https://doi.org/10.1126/science.1176906
  7. Freeman, K. R., Martin, A. P., Karki, D., Lynch, R. C., Mitter, M. S., Meyer, A. F. et al. 2009. Evidence that chytrids dominate fungal communities in high-elevation soils. Proc. Natl. Acad. Sci. U. S. A. 106: 18315-18320. https://doi.org/10.1073/pnas.0907303106
  8. Frohlich-Nowoisky, J., Pickergill, D. A., Despres, V. R. and Poschl, U. 2009. High diversity of fungi in air particulate matter. Proc. Natl. Acad. Sci. U. S. A. 106: 12814-12819. https://doi.org/10.1073/pnas.0811003106
  9. Gopal, K., Lakshmi, L. M., Sarada, G., Nagalakshmi, T., Sankar, T. G., Gopi, V. et al. 2014. Citrus melanose (Diaporthe citri Wolf): a review. Int. J. Curr. Microbiol. Appl. Sci. 3: 113-124.
  10. Horton, T. R. and Bruns, T. D. 2001. The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol. Ecol. 10: 1855-1871. https://doi.org/10.1046/j.0962-1083.2001.01333.x
  11. Hyun, J. W., Kim, D. W., Lee, S. C. and Kim, K. S. 2002. Citrus diseases. In: Compendium of Citrus Diseases and Pests, eds. by Rural Development Administration and Jeju Citrus Agricultural Grower's Cooperative, pp. 14-92. National Jeju Agricultural Experiment Station, RDA, Korea and Jeju Citrus Agricultural Grower's Cooperative, Jeju, Korea. (In Korean)
  12. Hyun, J.-W., Yi, P.-H., Hwang, R.-Y. and Moon, K.-H. 2013. Aspect of incidence of the major citrus diseases recently. Res. Plant Dis. 19: 102-107. (In Korean) https://doi.org/10.5423/RPD.2013.19.2.102
  13. Ko, B. S. 2009. History and real state of citrus and request of reducing produce. Citrus Gard 197: 2-7.
  14. Kwon, H.-M., Nam, K.-W., Kim, K.-S., Kim, D.-H., Lee, S.-C. and Hyeon, J.-W. 2003. Characterization of the causal fugus of citrus melanose, Diaporthe citri isolated from blighted twigs of citrus in Jeju. Res. Plant Dis. 9: 153-158. https://doi.org/10.5423/RPD.2003.9.3.153
  15. Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Hogberg, P., Stenlid, J. et al. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173: 611-620. https://doi.org/10.1111/j.1469-8137.2006.01936.x
  16. Marin-Felix, Y., Hernandez-Restrepo, M., Wingfield, M. J., Akulov, A., Carnegie, A. J., Cheewangkoon, R. et al. 2019. Genera of phytopathogenic fungi: GOPHY 2. Stud. Mycol. 92: 47-133. https://doi.org/10.1016/j.simyco.2018.04.002
  17. Mondal, S. N., Vicent, A., Reis, R. F. and Timmer, L. W. 2007. Saprophytic colonization of citrus twigs by Diaporthe citri and factors affecting pycnidial production and conidial survival. Plant Dis. 91: 387-392. https://doi.org/10.1094/PDIS-91-4-0387
  18. National Crop Pest Management System, South Korea. 2022. URL [20 December 2022].
  19. O'Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J.-M. and Vilgalys, R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ Microbiol. 71: 5544-5550. https://doi.org/10.1128/AEM.71.9.5544-5550.2005
  20. Office of Agricultural Affairs. 2022. South Korea: citrus annual. URL https://www.fas.usda.gov/data/south-korea-citrus-annual-6 [20 December 2022].
  21. Pickles, B. J., Genney, D. R., Potts, J. M., Lennon, J. J., Anderson, I. C. and Alexander, I. J. 2010. Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol. 186: 755-768. https://doi.org/10.1111/j.1469-8137.2010.03204.x
  22. Santos, J. M., Correia, V. G. and Phillips, A. J. L. 2010. Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol. 114: 255-270. https://doi.org/10.1016/j.funbio.2010.01.007
  23. Santos, J. M. and Phillips, A. J. L. 2009. Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers. 34: 111-125.
  24. Seifert, K. A. 2009. Progress towards DNA barcoding of fungi. Mol. Ecol. Resour. 9(Suppl 1): 83-89. https://doi.org/10.1111/j.1755-0998.2009.02635.x
  25. Timmer, L. W., Garnsey, S. M. and Graham, J. H. 1988. Compendium of Citrus Diseases. APS, St. Paul, MN, USA. 80 pp.
  26. Timmer, L.W., Mondal, S. N., Peres, N. A. R. and Bhatia, A. 2004. Fungal diseases of fruit and foliage of citrus trees. In: Diseases of Fruits and Vegetables, ed. by S. A. M. H. Naqvi, Vol. 1, pp. 247-290. Springer, Dordrecht, The Netherlands.
  27. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, San Diego, CA, USA.
  28. Whiteside, J. O., Garnsey, S. M. and Timmer, L. W. 1988. Compendium of Citrus Disease. APS Press, St. Paul, MN, USA. 80 pp.
  29. Wolf, F. A. 1926. The perfect stage of the fungus which causes melanose of citrus. J. Agric. Res. 33: 621-625.
  30. Zinger, L., Coissac, E., Choler, P. and Geremia, R. A. 2009. Assessment of microbial communities by graph partitioning in a study of soil fungi in two alpine meadows. Appl. Environ. Microbiol. 75: 5863-5870. https://doi.org/10.1128/AEM.00748-09