DOI QR코드

DOI QR Code

Alkali Recovery by Electrodialysis Process: A Review

전기투석 공정에 의한 알칼리 회수: 총설

  • Sarsenbek Assel (Nano Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 살센벡 아샐 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.02.23
  • Accepted : 2023.06.07
  • Published : 2023.06.30

Abstract

Electrodialysis (ED) is essential in separating ions through an ion exchange membrane. The disposal of brine generated from seawater desalination is a primary environmental concern, and its recycling through membrane separation technology is highly efficient. Alkali is produced by several chemical industries such as leather, electroplating, dyeing, and smelting, etc. A high concentration of alkali in the waste needs treatment before releasing into the environment as it is highly corrosive and has a chemical oxygen demand (COD) value. The concentration of calcium and magnesium is almost double in brine and is the perfect candidate for carbon dioxide adsorption, a major environmental pollutant. Sodium hydroxide is essential for the metal carbonation process which, is easily produced by the bipolar membrane electrodialysis process. Various strategies are available for its recovery, like reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and ED. This review discusses the ED process by ion exchange membrane for alkali recovery are discussed.

전기투석(ED)은 이온교환막을 통한 이온의 분리에서 중요한 과정이다. 해수담수화로 발생하는 염수 처리는 환경적으로 큰 문제이며 막분리 기술을 통한 재활용 효율이 높다. 마찬가지로 알칼리는 가죽, 전기도금, 염색, 제련 등과 같은 여러 화학 산업에서 생산된다. 폐기물의 고농도 알칼리는 부식성이 높고 화학적 산소 요구량(COD) 값이 높기 때문에 환경에 방출하기 전에 처리해야 합니다. 칼슘과 마그네슘의 농도는 염수의 거의 두 배이며 주요 환경 오염 물질인 이산화탄소의 흡착에 완벽한 후보입니다. 수산화나트륨은 양극성 막 전기투석 공정으로 쉽게 생산되는 금속 탄산화 공정에 필수적입니다. 역삼투압(RO), 나노여과(NF), 초여과(UF), ED 등 다양한 공정을 통해 회수가 가능하다. 본 검토에서는 알칼리 회수를 위한 이온교환막에 의한 ED 공정에 대해 논의한다.

Keywords

References

  1. E. Kim and R. Patel, "A review on lithium recovery by membrane process", Membr. J., 31, 315 (2021).
  2. Y. Li, Z.-L. Ye, R. Yang, and S. Chen, "Synchronously recovering different nutrient ions from wastewater by using selective electrodialysis", Water Sci. Technol., 86, 2627 (2022).
  3. R. Parnamae, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H. V. M. Hamelers, and M. Tedesco, "Bipolar membranes: A review on principles, latest developments, and applications", J. Membr. Sci., 617, 118538 (2021).
  4. T. Chen, J. Bi, Z. Ji, J. Yuan, and Y. Zhao, "Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review", Water Res., 226, 119274 (2022).
  5. Q. Ma, J. Mu, X. Lv, J. Meng, H. Cui, Y. Qiu, H. Ruan, and J. Shen, "Sustainable recovery of ionic resources from resin regeneration wastewater: Long-term evaluation, membrane fouling analysis, and cleaning", ACS ES&T Water, (2022).
  6. M. Manohar, A. K. Das, and V. K. Shahi, "Efficient bipolar membrane with functionalized graphene oxide interfacial layer for water splitting and converting salt into acid/base by electrodialysis", Ind. Eng. Chem. Res., 57, 1129 (2018).
  7. J. Ying, Y. Lin, Y. Zhang, Y. Jin, X. Li, Q. She, H. Matsuyama, and J. Yu, "Mechanistic insights into the degradation of monovalent selective ion exchange membrane towards long-term application of real salt lake brines", J. Membr. Sci., 652, 120446 (2022).
  8. S. Zhang, S. Wang, Z. Guo, Z. Ji, Y. Zhao, X. Guo, J. Liu, and J. Yuan, "Selective electrodialysis process for the separation of potassium: Transmembrane transport of ions in multicomponent solution systems", Sep. Purif. Technol., 300, 121926 (2022).
  9. Y. Zhang, Y. Lin, J. Ying, W. Zhang, Y. Jin, H. Matsuyama, and J. Yu, "Highly efficient monovalent ion transport enabled by ionic crosslinking-induced nanochannels", AIChE J., 68, e179825 (2022).
  10. T. Chen, J. Bi, Y. Zhao, Z. Du, X. Guo, J. Yuan, Z. Ji, J. Liu, S. Wang, F. Li, and J. Wang, "Carbon dioxide capture coupled with magnesium utilization from seawater by bipolar membrane electrodialysis", Sci. Total Environ., 820, 153272 (2022).
  11. Y. J. Kim, C. W. Hwang, M. H. Jeong, and T. S. Hwang, "Design of flow through continuous deionization system for indium recovery", Sep. Purif. Technol., 176, 200 (2017).
  12. K. Ghyselbrecht, B. Sansen, A. Monballiu, Z.-L. Ye, L. Pinoy, and B. Meesschaert, "Cationic selectrodialysis for magnesium recovery from seawater on lab and pilot scale", Sep. Purif. Technol., 221, 12 (2019).
  13. S. G. Lee, M. Y. Kim, W. W. So, K. S. Kang, and K. J. Kim, "Crosslinking of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes", Membr. J., 28, 326 (2018).
  14. W. Ye, J. Huang, J. Lin, X. Zhang, J. Shen, P. Luis, and B. Van der Bruggen, "Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: Conditioning NaOH as a CO2 absorbent", Sep. Purif. Technol., 144, 206 (2015).
  15. F. M. Baena-Moreno, F. Vega, L. Pastor-Perez, T. R. Reina, B. Navarrete, and Z. Zhang, "Novel process for carbon capture and utilization and saline wastes valorization", J. Nat. Gas Sci. Eng., 73, 103071 (2020).
  16. Q. B. Chen, J. Wang, Y. Liu, J. Zhao, P. F. Li, and Y. Xu, "Sustainable disposal of seawater brine by novel hybrid electrodialysis system: Fine utilization of mixed salts", Water Res., 201, 117335 (2021).
  17. W. Gao, Q. Fang, H. Yan, X. Wei, and K. Wu, "Recovery of acid and base from sodium sulfate containing lithium carbonate using bipolar membrane electrodialysis", Membr., 11, 152 (2021).
  18. S. H. Kwon and J. W. Rhim, "Study on acid/base formation by using sulfonated polyether ether ketone/aminated polysulfone bipolar membranes in water splitting electrodialysis", Ind. Eng. Chem. Res., 55, 2128 (2016).
  19. X. Liu, X. Song, X. Jian, H. Yang, X. Mao, and Z. Liang, "A BiOCl/bipolar membrane as a separator for regenerating NaOH in water-splitting cells", RSC Adv., 6, 9880 (2016).
  20. N. H. Rathod, J. Sharma, S. K. Raj, V. Yadav, A. Rajput, and V. Kulshrestha, "Fabrication of a stable and efficient bipolar membrane by incorporation of nano-MoS2 interfacial layer for conversion of salt into corresponding acid and alkali by water dissociation using electrodialysis", ACS Sustainable Chem. Eng., 8, 13019 (2020).
  21. K. Song, S. C. Chae, and J. H. Bang, "Separation of sodium hydroxide from post-carbonation brines by bipolar membrane electrodialysis (BMED)", Chem. Eng. J., 423, 130179 (2021).
  22. J. Yao, L. Yang, Z. Ye, J. Wang, Y. Li, and X. Tong, "Process optimization of industrial waste salts separated into acid/base for the realization of resource utilization by bipolar membrane electrodialysis", Desalin. Water Treat., 172, 377 (2019).
  23. M. Li, M. Sun, W. Liu, X. Zhang, C. Wu, and Y. Wu, "Quaternized graphene oxide modified PVA-QPEI membranes with excellent selectivity for alkali recovery through electrodialysis", Chem. Eng. Res. Des., 153, 875 (2020).
  24. A. K. Singh, M. Bhushan, and V. K. Shahi, "Alkaline stable thermal responsive cross-linked anion exchange membrane for the recovery of NaOH by electrodialysis", Desalination, 494, 114651 (2020).
  25. C. Wang, J. Liao, J. Li, Q. Chen, H. Ruan, and J. Shen, "Alkaline enrichment via electrodialysis with alkaline stable side-chain-type polysulfone-based anion exchange membranes", Sep. Purif. Technol., 275, 119075 (2021).
  26. O. Kozaderova, "Chromium-modified heterogeneous bipolar membrane: Structure, characteristics, and practical application in electrodialysis", Membr., 13, 172 (2023).