DOI QR코드

DOI QR Code

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed

대청호 유역 비점오염원 제어를 위한 생태습지의 오염물질 제거효율 평가

  • Received : 2023.04.12
  • Accepted : 2023.06.06
  • Published : 2023.06.30

Abstract

Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland's capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.

대청호는 유역에 있는 비점오염원으로부터 유입되는 오염물질로 인해 남조류 과다증식에 기인한 녹조가 빈번하게 발생하고 있다. 이에 녹조 관리 대책 중 하나로 인공습지를 설치하여 호소에 유입되는 오염물질을 저감하고 있다. 본 연구에서는 비점오염원의 관리방법으로 인공습지의 적용 가능성을 평가하기 위해 대청호 상류에 설치된 서화천 생태습지를 대상으로 2014년부터 2020년까지 유입수 및 유출수의 BOD, COD, SS, T-N, T-P 등 오염물질 농도를 분석하였다. 분석 결과 대체적으로 인공습지에서의 처리를 통해 오염물질의 농도가 감소하는 것이 확인되었으며, 특히, 유기물질보다 질소, 인과 같은 영양염류에 있어 높은 처리효율이 확인되었다. 유입수의 오염물질 농도에 따른 처리효율을 구간을 나누어 분석한 결과 대체적으로 고농도에서 처리효율이 높은 경향을 나타내었다. 설치 및 운영 경과에 따른 연도별 인공습지 처리효율을 분석한 결과, T-P에서 큰 변화가 확인되었다. 이는 인공습지 조성 초기에는 식생의 성장에 따라 높은 처리효율을 보였지만, 식생이 안정화되고 습지 퇴적층이 포화됨에 따라 처리효율이 점진적으로 감소한 결과로 판단된다. 본 연구의 결과는 초기 강우 등 높은 농도의 오염물질 유입 및 주기적인 퇴적토 준설 등의 관리가 이루어진다면 인공습지가 유역면적이 넓고, 비점오염원의 영향을 크게 받는 댐 저수지의 부영양화 억제에 유용한 수단이 될 수 있음을 보여준다.

Keywords

Acknowledgement

본 연구는 환경부 「폐자원에너지·재활용 전문인력양성사업」의 지원으로 수행되었습니다.

References

  1. Abdalla, K.Z. and G. Hammam. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research 13(1): 42-48.
  2. Bahn, G.-S. 2022. A study on evaluation method for structural suitability of constructed wetlands in dam reservoirs as an ecological water purification system. Journal of the Korean Institute of Landscape Architecture 50(2): 23-40. https://doi.org/10.9715/KILA.2022.50.2.023
  3. Bayley, M., L. Davison and T.R. Headley. 2003. Nitrogen removal from domestic effluent using subsurface flow constructed wetlands: influence of depth, hydraulic residence time and pre-nitrification. Water Science and Technology 48(5): 175-182. https://doi.org/10.2166/wst.2003.0313
  4. Bernat, K. and I. Wojnowska-Baryla. 2007. Carbon source in aerobic denitrification. Biochemical Engineering Journal 36(2): 116-122. https://doi.org/10.1016/j.bej.2007.02.007
  5. Cha, S.B. 2015. Evaluated of Pollutants Removal Efficiency in the Constructed Wetland Connected with Sewage Treatment Plant, Master Thesis Kumoh National Institute of Technology, Korea.
  6. Cheon, S.-U., J.-A. Lee, J.J. Lee, Y.-B. Yoo, K.-C. Bang and Y.-J. Lee. 2006. Relationship among inflow volume, water quality and algal growth in the Daecheong Lake. Journal of Korean Society on Water Environment 22(2): 342-348.
  7. Choi, H., M. Jeon and L. Kim. 2020. Effect of cultivation activity in Daecheong Lake flood control site on water quality. Journal of Wetlands Research 22(1): 49-58. https://doi.org/10.17663/JWR.2020.22.1.49
  8. Choi, J. and Y. Ban. 2007. Improving artificial wetlands for nonpoint source pollution control. KEI report WO-06.
  9. Choi, K., S.W. Kim, D.S. Kim and Y. Lee. 2014. Operating status and improvement plans of ten wetlands constructed in dam reservoirs in Korea. Journal of Wetlands Research 16(3): 431-440. https://doi.org/10.17663/JWR.2014.16.3.431
  10. Choi, M., M. Byeon, H. Park, N. Jeon, S. Yoon and D. Kong. 2007. The characteristics of vegetation of hydrophytes and the amount of nutrient removal in artificial vegetation island of Lake Paldang. Korean Society on Water Environment 23(3-3): 474-483.
  11. Chung, S.W. and H.S. Lee. 2011. Analysis of Microcystis bloom in Daecheong Reservoir using ELCOM-CAEDYM. Journal of Korean Society on Water Environment 27(1): 73-87. https://doi.org/10.15681/KSWE.2011.27.1.9
  12. Demeke, A. 2016. Cyanobacteria blooms and biological control methods. International Journal of Fauna and Biological Studies 3: 32-38.
  13. Fisher, J. and M. Acreman. 2004. Wetland nutrient removal: a review of the evidence. Hydrology and Earth System Sciences 8(4): 673-685. https://doi.org/10.5194/hess-8-673-2004
  14. Gobler, C.J. 2020. Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91: 101731.
  15. Hang, Q., H. Wang, Z. Chu, B. Ye, C. Li and Z. Hou. 2016. Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development. Environmental Science and Pollution Research 23: 8260-8274. https://doi.org/10.1007/s11356-016-6324-y
  16. Ibelings, B.W., J. Fastner, M. Bormans and P.M. Visser. 2016. Cyanobacterial blooms. Ecology, prevention, mitigation and control: Editorial to a CYANOCOST Special Issue. Aquatic Ecology 50(3): 327-331. https://doi.org/10.1007/s10452-016-9595-y
  17. K-water. 2010. The Basic and Implementation Design of Daecheong Lake Ecological Wetland Development Project.
  18. K-water. 2014. Annual Operation Report of Sooak-cheon and Annae-cheon constructed wetland in 2013.
  19. Kang, T.-U. and S.-J. Lee. 2016. A simulation method for reduction facilities of natural type for non-point pollution by the SWMM. Journal of Hazard Mitigation 16(2): 123-131. https://doi.org/10.9798/KOSHAM.2016.16.2.123
  20. Kim, D.-O. and J.-C. Park. 2020. Cycling of matters in the constructed wetland. Journal of Environmental Science International 29(3): 299-306. https://doi.org/10.5322/JESI.2020.29.3.299
  21. Kim, H.-C., J.-H. Ham, J.-Y. Han and C.-G. Yoon. 2006. Early stage performance of constructed wetland system for nonpoint source pollution control. Korean Journal of Ecology and Environment 39(4): 481-488.
  22. Kim, J., T. Lee and D. Seo. 2017. Algal bloom prediction of the lower Han River, Korea using the EFDC hydrodynamic and water quality model. Ecological Modelling 366: 27-36. https://doi.org/10.1016/j.ecolmodel.2017.10.015
  23. Kim, S. and P. Geary. 2001. The impact of biomass harvesting on phosphorus uptake by wetland plants. Water Science and Technology 44(11-12): 61-67. https://doi.org/10.2166/wst.2001.0810
  24. Kim, T.-H., K.-E. Sung, D.-H. Ha, D.-H. Kim, S.-U. Heo and C.-S. Choi. 2015. Evaluation of treatment efficiencies of pollutants in Daecheong Lake Juwon Stream constructed wetlands. Journal of Korean Society of Water and Wastewater 29(2): 211-222. https://doi.org/10.11001/jksww.2015.29.2.211
  25. Ko, D.-H., Y.-C. Chung and S.-C. Seo. 2010. Removal mechanisms for water pollutant in constructed wetlands. Journal of Korean Society of Environmental Engineers 32(4): 379-392.
  26. Lee, C.G., T.D. Fletcher and G. Sun. 2009. Nitrogen removal in constructed wetland systems. Engineering in Life Sciences 9(1): 11-22. https://doi.org/10.1002/elsc.200800049
  27. Lee, G.-J. and K. Sung. 2013. Effects of floating and submerged plants on important water environments of wetland. Journal of Wetlands Research 15(3): 289-300. https://doi.org/10.17663/JWR.2013.15.3.289
  28. Lee, H. and C. Bae. 2002. Runoff characteristics and strategies for nonpoint source reduction. Journal of Korean Society on Water Quality 18: 569-576.
  29. Lee, J.E., S.-J. Youn, M. Byeon and S.-J. Yu. 2020. Occurrence of cyanobacteria, actinomycetes, and geosmin in drinking water reservoir in Korea: a case study from an algal bloom in 2012. Water Supply 20(5): 1862-1870. https://doi.org/10.2166/ws.2020.102
  30. Lee, S.-P. and J.-C. Park. 2017. Management of organic matters by constructed treatment wetlands during rainfall events. Journal of Environmental Science International 26(3): 401-410. https://doi.org/10.5322/JESI.2017.26.3.401
  31. Magdaleno, A., C.G. Velez, M.T. Wenzel and G. Tell. 2014. Effects of cadmium, copper and zinc on growth of four isolated algae from a highly polluted Argentina river. Bulletin of Environmental Contamination and Toxicology 92(2): 202-207. https://doi.org/10.1007/s00128-013-1171-8
  32. Mandel, A., I. Zekker, M. Jaagura and T. Tenno. 2019. Enhancement of anoxic phosphorus uptake of denitrifying phosphorus removal process by biomass adaption. International Journal of Environmental Science and Technology 16: 5965-5978. https://doi.org/10.1007/s13762-018-02194-2
  33. Marin, J.C.A., A.H. Caravelli and N.E. Zaritzky. 2016. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor. Bioresource Technology 200: 380-387. https://doi.org/10.1016/j.biortech.2015.10.024
  34. MOE (Ministry of Environment, Korea). 2016. Standard Methods for Analysis of Water Pollution. Ministry of Environment, Sejong, Republic of Korea.
  35. O'geen, A., R. Budd, J. Gan, J. Maynard, S. Parikh and R. Dahlgren. 2010. Mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. Advances in Agronomy 108: 1-76. https://doi.org/10.1016/S0065-2113(10)08001-6
  36. Oak, J.-H., Y.-S. Keum, M.-S. Hwang and Y.-S. Oh. 2005. New records of marine algae from Korea II. Algae 20(3): 177-181. https://doi.org/10.4490/ALGAE.2005.20.3.177
  37. Oh, K.-H. and Y.-C. Cho. 2015. Evaluation of contamination level of the sediments from Chusori and Chudong areas in Daechung Reservoir. Journal of Korean Society of Environmental Engineers 37(5): 277-284. https://doi.org/10.4491/KSEE.2015.37.5.277
  38. Oh, K.-H., Y.-J. Kim and Y.-C. Cho. 2015. Effects of sediments on the growth of algae at Chusori area in Daechung Reservoir. Journal of Korean Society on Water Environment 31(5): 533-542. https://doi.org/10.15681/KSWE.2015.31.5.533
  39. Ozkan, K., E. Jeppesen, M. Sondergaard, T.L. Lauridsen, L. Liboriussen and J.-C. Svenning. 2013. Contrasting roles of water chemistry, lake morphology, land-use, climate and spatial processes in driving phytoplankton richness in the Danish landscape. Hydrobiologia 710(1): 173-187. https://doi.org/10.1007/s10750-011-0996-6
  40. Pan, Z., J. Zhou, Z. Lin, Y., Wang, P. Zhao, J. Zhou, S. Liu and X. He. 2020. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresource Technology 301: 122726.
  41. Park, J.-G. 2005. Water environmental factors and trophic states in Lake Daecheong. Korean Journal of Ecology and Environment 38(3): 382-392.
  42. Park, J., J. Church, Y. Son, K.-T. Kim and W.H. Lee. 2017. Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms(HABs). Ultrasonics Sonochemistry 38: 326-334. https://doi.org/10.1016/j.ultsonch.2017.03.003
  43. Park, J.S., K.S. Kim, Y.C. Kim and K.H. Rhee. 2012. Evaluation of treatment efficiencies of water quality for 5 years in constructed wetland to upper region of water source. Journal of Wetlands Research 14(4): 479-488.
  44. Perme, M.P. and D. Manevski. 2019. Confidence intervals for the Mann-Whitney Test. Statistical Methods in Medical Research 28(12): 3755-3768. https://doi.org/10.1177/0962280218814556
  45. Phillips, G., O.-P. Pietilainen, L. Carvalho, A. Solimini, A. Lyche Solheim and A. Cardoso. 2008. Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42(2): 213-226. https://doi.org/10.1007/s10452-008-9180-0
  46. Sahinkaya, E., N. Dursun, A. Kilic, S. Demirel, S. Uyanik and O. Cinar. 2011. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production. Water Research 45(20): 6661-6667. https://doi.org/10.1016/j.watres.2011.09.056
  47. Seo, D.-C., M.-R. Park, H.-J. Kim, I.-J. Cho, H.-J. Lee, S.-J. Sung, J.-S. Cho and J.-S. Heo. 2006. Development of sewage treatment apparatus for detached house in agricultural village by natural purification method. Korean Journal of Environmental Agriculture 25(3): 202-210. https://doi.org/10.5338/KJEA.2006.25.3.202
  48. Seo, D.-C., S.-W. Kang, H.-O. Kim, M.-J. Han, B.-J. Lim, J.-H. Park, K.-S. Kim, Y.-J. Lee, I.-W. Choi and J.-S. Heo. 2011. Evaluation of treatment efficiencies of pollutants in Boknae bio-park constructed wetlands. Korean Journal of Soil Science and Fertilizer 44(2): 263-270. https://doi.org/10.7745/KJSSF.2011.44.2.263
  49. Seong, J.-U., S.-P. Lee, J.-K. Lee and J.-C. Park. 2013. Effects of Gumi City Sewage Treatment Effluent in the downstream nutrient matter: comparison of daily loading. Journal of Environmental Science International 22(12): 1643-1650.
  50. Son, Y.-K., C.-G. Yoon, H.-J. Kim and J.-H. Haam. 2011. Variation of water treatment efficiency during long-term operation of constructed wetland. Journal of The Korean Society of Agricultural Engineers 53(6): 121-128. https://doi.org/10.5389/KSAE.2011.53.6.121
  51. Spieles, D.J. and W.J. Mitsch. 1999. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low-and high-nutrient riverine systems. Ecological Engineering 14(1-2): 77-91. https://doi.org/10.1016/S0925-8574(99)00021-X
  52. Sundaravadivel, M. and S. Vigneswaran. 2001. Constructed wetlands for wastewater treatment. Critical Reviews in Environmental Science And Technology 31(4): 351-409. https://doi.org/10.1080/20016491089253
  53. US EPA. 2000. Design Manual; Constructed Wetlands Treatments of Municipal Wastewaters. U.S. EPA 625/R-99/010, Cincinnati, Ohio, pp. 12-20.
  54. Vilhena, L.C., I. Hillmer and J.R. Imberger. 2010. The role of climate change in the occurrence of algal blooms: Lake Burragorang, Australia. Limnology and Oceanography 55(3): 1188-1200. https://doi.org/10.4319/lo.2010.55.3.1188
  55. Visser, P.M., J.M. Verspagen, G. Sandrini, L.J. Stal, H.C. Matthijs, T.W. Davis, H.W. Paerl and J. Huisman. 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54: 145-159. https://doi.org/10.1016/j.hal.2015.12.006
  56. Vymazal, J. 2005. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering 25(5): 478-490. https://doi.org/10.1016/j.ecoleng.2005.07.010