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Hepatitis A is a disease caused by an infection with the hepatitis A virus (HAV). 
The HAV, a positive-sense single-stranded RNA virus with a 7.5 kb genome, be-
longs to the genus, Hepatovirus, family, Picornaviridae [1]. The HAV was initially 
classified as a non-enveloped virus, but a recent study reported that this virus 
could exist in an enveloped form by hijacking the cellular membranes [2]. The 
HAV is hepatotropic and produces viremia by replicating in liver tissue. After rep-
lication, the virus is released into bile, where the detergent action of bile salts re-
moves the envelope, resulting in its eventual excretion in feces [3]. The virus can 
cause mild to severe symptoms, including jaundice, fatigue, and abdominal pain, 
affecting an estimated 1.4 million people yearly. In addition, approximately 113 
million people become infected with the HAV but do not develop symptoms [4]. 
Although the disease is rarely fatal, it can cause debilitating symptoms. In rare cas-
es, however, it can lead to deadly acute liver failure (fulminant hepatitis). Hepatitis 
A occurs sporadically and in epidemics worldwide and tends to recur cyclically. 
The HAV is typically transmitted through direct contact with infected individuals 
or by ingesting contaminated food or water, making it one of the most common 
causes of foodborne infections. The virus spreads through the fecal-oral route, 
meaning that it is present in the feces of infected individuals and can be transmit-
ted when contaminated fecal matter enters the mouth [5–7]. Despite the availabil-
ity of effective vaccines, HAV infections remain a serious public health concern 
worldwide. 

The Human HAV has been propagated successfully in a monkey kidney cell line 
[8]. Previous studies reported that the HAV only infects humans and non-human 
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Abstract

The hepatitis A virus (HAV) induces severe acute liver injury and is adapted to hu-
man and monkey cell lines but not other cells. In this study, the HAV was inoculat-
ed into porcine kidney (PK-15) cells to determine its infectivity in porcine cells. The 
growth pattern of the HAV in PK-15 cells was compared with its growth pattern in 
fetal rhesus kidney (FRhK-4) cells. The growth of HAV was less efficient in PK-15 
cells. In conclusion, HAV replication was verified in PK-15 cells for the first time. 
Further investigations will be needed to identify the HAV-restrictive mechanisms in 
PK-15 cells. 
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primates as its natural hosts [9]. The infectivity of the HAV has 
also mainly been studied in cell lines originating from humans 
and non-human primates [10,11]. In contrast, one study sug-
gested that the HAV can infect a porcine kidney cell line, which 
has not been confirmed in further studies [12]. Interestingly, a 
previous study observed anti-HAV antibodies in swine sera, 
and pigs were infected experimentally with the HAV [13]. 
Therefore, this study was performed to verify the HAV infectiv-
ity and replication in the porcine kidney cell line, which is used 
widely for the pathogenic studies of several viruses.  

HAV strain HM-175/18f, clone B (VR-1402), was obtained 
from the American Type Culture Collection (ATCC, USA). Fe-
tal rhesus kidney (FRhK-4, ATCC no. CRL-1688) and porcine 
kidney (PK-15, ATCC no. CCL-33) cells were inoculated with 
100 genomic-equivalent (GE) copies of the HAV per cell. Both 
cell types inoculated with the virus were maintained for three 
days in Dulbecco’s modified Eagle’s medium supplemented with 
4% heat-inactivated fetal bovine serum (Gibco, USA) and an 
antibiotic-antimycotic reagent (Gibco). Supernatants of the in-
oculated cells and cell lysates were sampled daily for three days. 
The viral RNA was extracted from the supernatants using a 
Patho Gene-spin DNA/RNA kit (iNtRON, Korea), and intracel-
lular RNA was extracted from the cell lysates using an RNeasy 
Mini RNA isolation kit (Qiagen, Germany) according to the 
manufacturer’s instructions. Table 1 lists the primers and probes 
used to detect the HAV RNA in this study. Reverse transcrip-
tion-quantitative polymerase chain reaction (RT-qPCR) for the 
detection of viral RNA was performed using an AgPath-ID 
One-Step RT-PCR kit (Applied Biosystems, USA) and a Smart 
Cycler thermal cycler (Cepheid, USA). The viral GE copy num-
bers were calculated from a standard curve generated using the 
plasmid DNA containing the target sequence of HAV (22–108 
bp of HM-175 strain, GenBank No. M14707). The viral genom-
ic copy numbers were divided by 108 GAPDH GE copies to cal-

culate the number of viruses per cell. GAPDH mRNA was 
quantified using a One Step TB Green PrimeScript RT-PCR Kit 
(Takara, Japan) and a Light Cycler thermal cycler (Roche, Swit-
zerland). The negative-sense HAV RNA was detected using 
previously described methods [13]. All experiments were re-
peated three times to obtain reliable results. FRhK-4 and PK-15 
cells were grown on six-well plates until they reached 70% con-
fluence for immunofluorescence assays. The following day, the 
cells were inoculated with 100 GE copies of VR-1402 per cell. 
The cells were fixed with 4% paraformaldehyde in PBS (pH 7.4), 
three days post-inoculation (dpi), and were permeabilized with 
0.25% Triton X-100 (Sigma, USA). An anti-HAV polyclonal an-
tibody (ab68579; Abcam, UK) diluted 1:1,000 with PBS was re-
acted with permeabilized cells. The cell nuclei were stained with 
4’,6-diamidino-2-phenylindole (DAPI). The red fluorescent 
spots of HAV in the cells were observed directly by fluorescence 
microscopy (EVOS FL Imaging System; Life Technologies, 
USA). 

The primary purpose of this study was to determine if HAV 
can infect porcine-derived PK-15 cells. FRhK-4 cells derived 
from a non-human primate were used as a positive control for 
HAV replication. Extracellular and intracellular viral copy num-
bers were determined using the cell culture supernatants and 
cell lysates, respectively, at 0, 1, 2, and 3 dpi. Both cell lines pro-
duced HAV from 1 dpi. On the other hand, the viral numbers 
were significantly higher in FRhK-4 cells than in PK-15 cells at 
2 and 3 dpi (Fig. 1A). The intracellular and extracellular viral 
numbers showed similar patterns. FRhK-4 cells contained sig-
nificantly higher numbers of intracellular viruses than PK-15 
cells at 1, 2, and 3 dpi (Fig. 1B). These results suggest that the 
HAV can replicate in PK-15 cells but less efficiently than in 
FRhK-4 cells. 

During replication, the HAV produces a negative-sense inter-
mediate viral RNA, which acts as a template for synthesizing a 

Table 1. Primers used in this study 

Region Primers Sequence (5’–3’) Positions*
5’ NCR of HAV HAVR TTTCCGGAGTCCCTCTTG 22-39

HAVL2 AAAGGGAAAATTTAGCCTATAGCC 85-108
HAV-probe FAM-ACTTGATACCTCACCGCCGTTTGCCT-TAMRA 58-83

VP3-VP1 junction of HAV External-F GCTCCTCTTTATCATGCTATGGAT 2172-2195
External-R CAGGAAATGTCTCAGGTACTTTCT 2392-2415
Internal-F ATGTTACTACACAAGTTGGAGAT 2194-2216
Internal-R GATCCTCAATTGTTGTGATAGCT 2357-2379

GAPDH GAPDH-F CCCAACGTGTCGGTTGT
GAPDH-R CCTGCTTCACCACCTTCTTGA

NCR, non-coding region; HAV, hepatitis A virus.
*Positions are numbered according to the genome of wild-type HAV strain HM-175 (M14707).
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Fig. 1. Infection of fetal rhesus kidney (FRhK)-4 cell and porcine kidney (PK)-15 cells with HM-175/18f hepatitis A virus (HAV). The cells 
were infected with a viral titer of 100 genome equivalents/cell. (A) Extracellular viral RNA copy numbers were determined from the su-
pernatants. (B) Intracellular viral RNA copy numbers were determined from cell lysates by dividing the viral RNA copy number by the 
GAPDH copy number. In uninfected control cells, HAV was not detected. Bar graphs represent the mean ± standard deviation (n = 3). 
Data were analyzed by Student t-test. ***p < 0.001.

Fig. 2. Screening of negative-sense hepatitis A virus (HAV) RNA in fetal rhesus kidney (FRhK)-4 cells (lanes 1, 2, 3, 4, 5, 6, and 7) and 
porcine kidney (PK)-15 cells (lanes 8, 9, 10, 11, 12, 13, and 14). This assay was performed at 0, 6, 12, 24, 36, 48, and 72 hours post-inocu-
lation (lanes 1&8, 2&9, 3&10, 4&11, 5&12, 6&13, and 7&14, respectively). In the uninfected control cells, negative-sense HAV RNA was 
not detected (data not shown).

positive-sense viral RNA [14,15]. The production of a nega-
tive-sense viral RNA was determined at 0, 6, 12, 24, 36, 48, and 
72 hours post-inoculation (hpi). The negative-sense viral RNA 
could be identified from 6 to 72 hpi in both cell types (Fig. 2). 
These results suggested that HAV successfully replicated in both 
cell lines. The intracellular localization of the HAV was identi-
fied in both FRhK-4 and PK-15 cells by an immunofluores-
cence assay (Fig. 3). The fluorescence spots were observed more 
prominently in the cytoplasm of FRhK-4 cells compared to PK-
15 cells, suggesting a higher efficiency of viral protein synthesis 
in FRhK-4 cells. This observation aligns with the intracellular 
viral copy number results, suggesting that viral protein synthe-

sis occurred successfully in both cell types but to a lesser extent 
in PK-15 cells. 

This study confirmed that HAV can infect and replicate in a 
porcine-derived cell line. This aligns with a previous study, 
which reported that pigs could be infected experimentally with 
the HAV [13]. Hence, HAV replication is not restricted to pri-
mates. The adaptation of HAV to different cell lines, including 
guinea pig cells, can occur through mutations in the 5' 
non-translated region or other regions [16]. A comparison of 
the mutated regions of PK-15-adapted HAV could identify the 
specific mutations required for successful adaptation during in-
fection in pig cells. Further investigations will be needed to ex-
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plore the potential mutations necessary for a HAV infection in 
porcine cells and elucidate the underlying mechanisms of adap-
tation. The in vitro results presented in this paper, together with 
the in vivo results, suggest that pigs may be another suitable ani-
mal model for examining HAV infections and their pathogene-
sis. On the other hand, the growth of HAV in PK-15 cells was 
less efficient than in FRhK-4 cells, suggesting some restriction 
mechanisms for the HAV in PK-15 cells. The precise mecha-
nism of these restrictive actions in PK-15 cells is not known. 
Further studies, including comparative genomic analysis, 
host-virus interaction studies, transcriptomic and proteomic 
profiling, characterization of cellular antiviral responses, and vi-

ral adaptation experiments, are needed to elucidate the factors 
contributing to the limited replication of HAV in PK-15 cells.  
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Fig. 3. Immunofluorescent staining of hepatitis A virus (HAV)-infected cells three days post-inoculation. Red fluorescent spots demon-
strate HAV proteins in the cytoplasm of HAV-infected cells. Nuclei were counterstained with DAPI (blue). × 400.
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