Acknowledgement
This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (no. 20223030040120 and no. 20214000000140).
References
- 산업통상자원부. 2018, "수소경제 활성화 로드맵," 정책동향보고서, Vol., pp.1-68.
- 김재경, 오은주, 정진영, 박진남, 김윤성; 임현지. 2019, "친환경 CO2-free 수소생산 활성화를 위한 정책연구," 에너지경제연구원 수시연구보고서, Vol., pp.1-97.
- 이원석, 김영민, 신영재, 왕지훈, 문상호, 박희준, 장성진; 권오광. 2021, "국가 수소공급 인프라 구축을 위한 블루수소의 역할," Vol.
- 이동주. 2022, "수소사회로 가는 길목, 액화수소 저장과 운송을 위한 진공기술," 진공이야기, Vol. 9(2), pp.19-27.
- Lee, S.J., Kim, M., Lee, D., Kim, J.; Kim, Y., 2007, "The effects of LNG-tank sloshing on the global motions of LNG carriers," Ocean Engineering, Vol. 34(1), pp.10-20. https://doi.org/10.1016/j.oceaneng.2006.02.007
- Ibrahim, R.A., 2020, "Assessment of breaking waves and liquid sloshing impact," Nonlinear Dynamics, Vol. 100, pp.1837-1925. https://doi.org/10.1007/s11071-020-05605-7
- 박준상. 2020, "사각용기의 강한 비선형 슬로싱 문제에서 발생하는 페러데이파와 슬로싱파의 상호작용," 한국가시화정보학회지, Vol. 18(3), pp.14-22. https://doi.org/10.5407/JKSV.2020.18.3.014
- 박준상. 2019, "사각용기에서 발생하는 고점성 유체의 슬로싱 유동," 한국가시화정보학회지, Vol. 17(3), pp.39-45. https://doi.org/10.5407/JKSV.2019.17.3.039
- Shao, C., Luo, K., Chai, M.; Fan, J., 2018, "Sheet, ligament and droplet formation in swirling primary atomization," AIP Advances, Vol. 8(4), p.045211.
- Shinjo, J.; Umemura, A., 2010, "Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation," International Journal of Multiphase Flow, Vol. 36(7), pp.513-532. https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
- Wu, S.; Ju, Y., 2021, "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Vol. 223, p.120001.
- Grotle, E.L.; Æsoy, V. Experimental and numerical investigation of sloshing in marine LNG fuel tanks. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, 2017; p. V001T001A046.
- Liu, Z., Feng, Y., Lei, G.; Li, Y., 2019, "Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels," Aerospace Science and Technology, Vol. 85, pp.544-555. https://doi.org/10.1016/j.ast.2019.01.005
- Brackbill, J.U., Kothe, D.B.; Zemach, C., 1992, "A continuum method for modeling surface tension," Journal of computational physics, Vol. 100(2), pp.335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
- Negeed, E.-S.R., Hidaka, S., Kohno, M.; Takata, Y., 2011, "Experimental and analytical investigation of liquid sheet breakup characteristics," International Journal of Heat and Fluid Flow, Vol. 32(1), pp.95-106. https://doi.org/10.1016/j.ijheatfluidflow.2010.08.005
- Daskiran, C., Xue, X., Cui, F., Katz, J.; Boufadel, M.C., 2021, "Large eddy simulation and experiment of shear breakup in liquid-liquid jet: formation of ligaments and droplets," International Journal of Heat and Fluid Flow, Vol. 89, p.108810.
- Hwang, J.; Sung, H.J., 2018, "Wall-attached structures of velocity fluctuations in a turbulent boundary layer," Journal of Fluid Mechanics, Vol. 856, pp.958-983. https://doi.org/10.1017/jfm.2018.727
- Gorokhovski, M.; Herrmann, M., 2008, "Modeling primary atomization," Annu. Rev. Fluid Mech., Vol. 40, pp.343-366. https://doi.org/10.1146/annurev.fluid.40.111406.102200