DOI QR코드

DOI QR Code

Soft-switching and low-conduction loss full-bridge converter with auxiliary circuit for battery charging applications

  • Yanke Liang (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Xu Liu (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology)
  • Received : 2022.05.18
  • Accepted : 2023.02.05
  • Published : 2023.07.20

Abstract

Traditional phase-shift full-bridge (PSFB) converters have the problems of a narrow zero-voltage switching (ZVS) range, a large circulating current, and voltage oscillation. A PSFB converter with novel auxiliary circuits is proposed to solve these problems for a wide voltage output charging application. A simple passive circuit is connected to the primary tap of a transformer with unbalanced magnetic windings, which can provide two differentiated constant triangular currents for ZVS of the leading and lagging legs in the full-load range. Thus, both the external series large inductance and the duty cycle loss are avoided. In addition, the introduced reactive loss is reduced. Meanwhile, a center tap clamping circuit is added on the secondary side. The leakage inductance of the transformer is fully utilized to resonate with the clamping capacitor. Hence, reductions in the voltage stress of the rectifier diode and circulating current can be achieved. A circuit steady-state analysis of the three modes of the proposed converter is carried out. When compared with the conventional PSFB converter, the proposed converter improves efficiency and reduces the filter requirements. A 100 kHz/1.05 kW prototype is established to verify the theoretical analysis.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 52077055), and the Projects of Central Government to Guide Local Scientific and Technological Development (Grant No. 226Z1601G).

References

  1. Pahlevani, M., Jain, P.: Soft-switching power electronics technology for electric vehicles: a technology review. IEEE J. Emerg. Sel. Topics Ind. Electron. 1(1), 80-90 (2020) https://doi.org/10.1109/JESTIE.2020.2999590
  2. Mohammed, S.A.Q., Junga, J.-W.: A comprehensive state-of-the art review of wired/wireless charging technologies for battery electric vehicles: Classification/common topologies/future research issues. IEEE Access. 9, 19572-19585 (2021) https://doi.org/10.1109/ACCESS.2021.3055027
  3. Lee, S.-Y., Lee, W.-S., Lee, J.-Y., Lee, I.-O.: High-efficiency 11 kW bi-directional on-board charger for Evs. J. Power Electron. 22(2), 363-376 (2022) https://doi.org/10.1007/s43236-021-00344-3
  4. Whitaker, B., et al.: A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices. IEEE Trans. Power Electron. 29(5), 2606-2617 (2014) https://doi.org/10.1109/TPEL.2013.2279950
  5. Hsieh, G. C., Li, J. C., Liaw, M. H.: A study on full-bridge zero-voltage-switched PWM converter: design and experimentation. Proc. IEEE IECON'93, 1281-1285 (1993)
  6. Redl, R., Sokal, N.O., Balogh, L.: A novel soft-switching full-bridge DC/DC converter: analysis, design considerations, and experimental results at 1.5 kW, 100 kHz. IEEE Trans. Power Electron. 6(3), 408-418 (1991) https://doi.org/10.1109/63.85909
  7. Ayyanar, R., Mohan, N.: A novel full-bridge DC-DC converter for battery charging using secondary-side control combines soft switching over the full load range and low magnetics requirement. IEEE Trans. Ind. Appl. 37(2), 559-565 (2001) https://doi.org/10.1109/28.913722
  8. Jain, P.K., Kang, W., Soin, H., Xi, Y.: Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology. IEEE Trans. Power Electron. 17(5), 649-657 (2002) https://doi.org/10.1109/TPEL.2002.802181
  9. Borage, M., Tiwari, S., Kotaiah, S.: A passive auxiliary circuit achieves zero-voltage-switching in full-bridge converter over entire conversion range. IEEE Power Electron. Lett. 3(4), 141-143 (2005) https://doi.org/10.1109/LPEL.2005.863601
  10. Kanamarlapudi, V.R.K., Wang, B., Kandasamy, N.K., So, P.L.: A new ZVS full-bridge DC-DC converter for battery charging with reduced losses over full-load range. IEEE Trans. Ind. Appl. 54(1), 571-579 (2018) https://doi.org/10.1109/TIA.2017.2756031
  11. Gautam, D., Musavi, F., Edington, M., Eberle, W., Dunford, W.G.: An automotive on-board 3.3 kW battery charger for PHEV application. IEEE Trans. Veh. Technol. 61(8), 3466-3474 (2012) https://doi.org/10.1109/TVT.2012.2210259
  12. Tran, D.D., Vu, H.N., Yu, S., Choi, W.: A Novel soft-switching full-bridge converter with a combination of a secondary switch and a nondissipative snubber. IEEE Trans. Power Electron. 33(2), 1440-1452 (2018) https://doi.org/10.1109/TPEL.2017.2688580
  13. Kim, E.S., Joe, K.Y., Kye, M.H., Kim, Y.H., Yoon, B.D.: An improved soft switching PWM FB DC/DC converter for reducing conduction losses. IEEE Trans. Power Electron. 14, 258-264 (1999) https://doi.org/10.1109/63.750178
  14. Cho, J.G., Baek, J.W., Jeong, C.Y., Rim, G.H.: Novel zero-voltage and zero-current-switching (ZVZCS) full bridge PWM converter using a simple auxiliary circuit. IEEE Trans. Ind. Appl. 35(1), 15-20 (1999) https://doi.org/10.1109/28.740840
  15. Kim, E.S., Kim, Y.-H.: A ZVZCS PWM FB DC/DC converter using modified energy-recovery snubber. IEEE Trans Ind. Electron. 49(5), 1120-1127 (2002) https://doi.org/10.1109/TIE.2002.803237
  16. Song, T.T., Huang, N.: A novel zero-voltage and zero-current switching full-bridge PWM converter. IEEE Trans. Power Electron. 20(2), 286-291 (2005) https://doi.org/10.1109/TPEL.2004.843016
  17. Gu, B., Lai, J.-S., Kees, N., Zheng, C.: Hybrid-switching full-bridge dc-dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery charges. IEEE Trans. Power Electron. 28(3), 1132-1144 (2013) https://doi.org/10.1109/TPEL.2012.2210565
  18. Lim, C.Y., Jeong, Y., Moon, G.W.: Phase-shifted full-bridge DC-DC converter with high efficiency and high power density using center-tapped clamp circuit for battery charging in electric vehicles. IEEE Trans. Power Electron. 34(11), 10945-10959 (2019) https://doi.org/10.1109/TPEL.2019.2899960
  19. Lee, I.: Hybrid PWM-resonant converter for electric vehicle on-board battery chargers. IEEE Trans. Power Electron. 31(5), 3639-3649 (2016) https://doi.org/10.1109/TPEL.2015.2456635
  20. Gu, B., Lin, C.-Y., Chen, B.F., Dominic, J., Lai, J.-S.: Zero-voltage switching PWM resonant full-bridge converter with minimized circulating losses and minimal voltage stresses of bridge rectifiers for electric vehicle. IEEE Trans. Power Electron. 28(10), 4657-4667 (2013) https://doi.org/10.1109/TPEL.2012.2233762
  21. Kim, J.H., Lee, I.O., Moon, G.W.: Analysis and design of a hybrid-type converter for optimal conversion efficiency in electric vehicle chargers. IEEE Trans. Ind. Electron. 64(4), 884-893 (2017) https://doi.org/10.1109/TIE.2016.2623261
  22. Lim, C.-Y., Jeong, Y., Lee, M.-S., Yi, K.-H., Moon, G.-W.: Half bridge integrated phase-shifted full-bridge converter with high efficiency using center-tapped clamp circuit for battery charging systems in electric vehicles. IEEE Trans. Power Electron. 35(5), 4934-4945 (2020) https://doi.org/10.1109/TPEL.2019.2931763
  23. Guo, S.L., Su, J.H., Lai, J.D., Yu, X.: Analysis and design of a wide-range soft-switching high-efficiency high-frequency-link inverter with dual phase-shift modulation. IEEE Trans. Power Electron. 33(9), 7805-7820 (2018) https://doi.org/10.1109/TPEL.2017.2771765
  24. Cuk, S.: Step-down converter having a resonant inductor, a resonant capacitor and a hybrid transformer. US Patent 7 915 874, Alexandria (2011)
  25. Cuk, S., Zhang, Z.: Voltage step-up switching DC-to-DC converter field of the invention. US Patent 7 778 046, Alexandria (2010)