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Abstract
The Jarque and Bera (1980) statistic is one of the well known statistics to test univariate normality. It is based

on the sample skewness and kurtosis which are the sample standardized third and fourth moments. Desgagné
and de Micheaux (2018) proposed an alternative form of the Jarque-Bera statistic based on the sample second
power skewness and kurtosis. In this paper, we generalize the statistic to a multivariate version by considering
some data driven directions. They are directions given by the normalized standardized scaled residuals. The
statistic is a modified multivariate version of Kim (2021), where the statistic is generalized using an empirical
standardization of the scaled residuals of data. A simulation study reveals that the proposed statistic shows better
power when the dimension of data is big.

Keywords: goodness-of-fit test, Jarque-Bera test, second power kurtosis, second power skew-
ness, multivariate normality, power comparison

1. Introduction

Testing normality has been studied extensively for many statisticians, since normality is one of the
most commonly made assumptions in the use of main statistical procedures. Consequently, there are
numerous test procedures in the literature to assess the assumption. For a survey of normality tests,
see D’Agostino and Stephens (1986) and Thode (2002).

Compared to the univariate normaity test, relatively less work has been done for multivariate
normality (MVN) test, and it is a topic of ongoing interest. For a general review of several MVN tests,
some references are Henze and Zirkler (1990), Henze (2002), Ebner and Henze (2020), and Srivastava
and Mudhoklar (2003). Henze (2002) concentrated on affine invariant and consistent procedures, and
Ebner and Henze (2020) emphasized on several classes of the weighted L2-statistics. Comparative
power study for MVN is done by Horswell and Looney (1992), Romeu and Ozturk (1993), Mecklin
and Mundfrom (2005), Farrell et al. (2007), and Hanusz et al. (2018).

In univariate normality tests, one of the well known and widely used statistics is the Jarque and
Bera (1980) test, which is based on the sample Pearson’s skewness and kurtosis. The test is popular
especially in econometrics. It is also known as the D’Agositno-Pearson or the Bowman-Shenton test
in statistics (D’Agostino and Pearson (1973, 1974); Bowman and Shenton, 1975). A multivariate
version of the test is proposed by Doornik and Hansen (2008) and Kim (2015, 2016).

While the Pearson’s sample skewness and kurtosis are the sample standardized third and fourth
moments, Desgagné and de Micheaux (2018) proposed the sample second power skewness and kurto-
sis. The combination of their measures could be an alternative to the Jarque-Bera statistic. Kim (2021)
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generalized the Desgagné and de Micheaux’s statistic to a multivariate version using orthogonalization
or an empirical standardization of the data.

It is well known that a p-dimensional random vector X is multivariate normal if and only if cT X is
univariate normal for all constant vectors c. Therefore there exists a vector c such that cT X does not
follow a normal if X is not normal. Malkovich and Afifi (1973) generalized some univariate normality
test statistics such as skewness, kurtosis and Shapiro and Wilk (1965) statistic to a multivariate version
using the idea. Fattorini (1986) improved the Malkovich and Afifi’s multivariate Shapiro-Wilk statistic
by considering some data-driven directions. Zhou and Shao (2014) suggested to pick a few data
driven directions c to detect non-normality of data. In this paper, we apply their idea to the statistic of
Desgagné and de Micheaux (2018) and generalize it to a MVN test statistic.

Section 2 describes the main idea and test statistics. Section 3 gives a data example and a com-
parison of power performances of the test statistics through a simulation study. Section 4 ends with
concluding remarks.

2. Test statistics

2.1. Univariate test statistics

Consider independent observations X1, . . . , Xn from X. We want to test

H0 : X has a normal distribution N
(
µ, σ2

)
for some µ and σ2.

The well known Jarque-Bera statistic for univariate normality is based on the Pearson’s sample skew-
ness

√
b1 and kurtosis b2. It is

JB =
n
6

( √
b1

)2
+

n
24

(b2 − 3)2 , (2.1)

where

√
b1 =

1
n

n∑
i=1

Z3
i =

1
n

n∑
i=1

|Zi|
3 sign (Zi) ,

b2 =
1
n

n∑
i=1

Z4
i ,

with Zi = (Xi − X̄)/S , X̄ = n−1 ∑n
i=1 Xi, S 2 = n−1 ∑n

i=1(Xi − X̄)2.
Desgagné and de Micheaux (2018) defined the sample second power skewness B2 and the sample

second power kurtosis K2,

B2 =
1
n

n∑
i=1

|Zi|
2 sign (Zi) ,

K2 =
1
n

n∑
i=1

Z2
i log |Zi| ,



Multivariate normality tests 425

and they proposed a Jarque-Bera type normality test statistic based on B2 and K2,

nB2
2

3 − 8/π
+

n
(
K2 −

(
2 − log 2 − γ

)
/2

)2(
3π2 − 28

)
/8

. (2.2)

The statistic comes from the limit distribution of (B2,K2),

√
n
(

−2B2
−2−1 [

K2 −
(
2 − log 2 − γ

)
/2

] )
d
→ N2

(
0,

(
4 (3 − 8/π) 0

0
(
3π2 − 28

)
/32

))
using the central limit theorem with γ = −Γ′(1)/Γ(1) = 0.577215665 . . . , Γ(x) is the gamma function.

Their statistic in (2.2) follows the chi-squared distribution with 2 degrees of freedom χ2
2 asymp-

totically. To make the distribution follow χ2
2 even for small sample sizes, they proposed a modified

version of the statistic in (2.2),

DX =
nB2

2

(3 − 8/π) (1 − 1.9/n)
+

n
[(

K2 − B2
2

) 1
3
−

((
2 − log 2 − γ

)
/2

) 1
3 (1 − 1.026/n)

]2

72−1 ((
2 − log 2 − γ

)
/2

)− 4
3
(
3π2 − 28

) (
1 − 2.25/n0.8) . (2.3)

2.2. Multivariate test statistics

Let X1, . . . , Xn be independent observations from a p-variate random vector X, and let Np(µ,Σ) be a
p-variate multivariate normal distribution with mean vector µ and covariance matrix Σ. We want to
test the null hypothesis

H0 : X has Np (µ,Σ) for some µ and Σ.

Let

X̄ =
1
n

n∑
i=1

Xi, S =
1
n

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
(2.4)

be a sample mean vector and a sample covariance matrix with T a transpose. If X1, . . . , Xn are a
sample from Np(µ,Σ), then Z1, . . . , Zn with

Zi = S−
1
2
(
Xi − X̄

)
, i = 1, . . . , n, (2.5)

follow Np(0, I) asymptotically, where S−1/2 is a symmetric positive definite square root of S−1, the
inverse matrix of S in (2.4). The Zi’s are called the scaled residuals.

It is well known that Z is Np(0, I) if and only if cT Z is a univariate normal for all

c ∈ Up = {c ∈ Rp : ‖c‖ = 1} .

Therefore we can find a vector c such that cT Z does not follow univariate normal if Z is not normal.
Malkovich and Afifi (1973) generalized some univariate normality test statistics such as skewness,
kurtosis and Shapiro-Wilk statistic to multivariate cases by use of Roy (1953)’s union-intersection
principle. It is to investigate all the possible linear combinations that reduce to a standard normal
distribution under the null hypothesis and find the direction c that gives the least normal projection. If
the least normal projection is not significantly different from normal, then we cannot reject the joint
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normality of the variables. Kim and Bickel (2003) showed the null distribution of the generalized
Shapiro-Wilk type statistic based on the idea. Kim (2006) generalized the Cramér-von Mises statistic
to test multivariate normality using the principle, and showed the limit distribution of the proposed
statistic.

One of good points of those statistics is that they are affine invariant. In other words they are
invariant with respect to nonsingular matrix multiplication and vector addition. Hence the distribu-
tions of the statistics under the null hypothesis do not depend on the unknown parameters µ and Σ.
However a main drawback of those statistics is that they are very hard to compute especially when the
dimension of data is large.

One possible way to overcome the drawback of the statistic is to consider some particular direc-
tions instead of all possible ones. The trivial direction is ek = (0, . . . , 0, 1, 0, . . . , 0)T , the unit vector
with its kth component 1 and all the others 0. Then

eT
k Zi = (0, . . . , 0, 1, 0, . . . , 0) ·

(
Z1i,Z2i, . . . ,Zpi

)T
= Zki, i = 1, . . . , n,

is the kth component of the scaled residuals Zi in (2.5). Zki’s, i = 1, . . . , n, follow approximately
independent univariate standard normal N(0, 1) under the null hypothesis. Srivastava and Hui (1987)
suggested principal component approach for the directions. As a matter of fact, almost all univariate
test statistics could be generalized to multivariate ones using orthogonalization. Several multivariate
statistics are generated by considering the corresponding univariate statistic for each coordinate of the
scaled residuals. Villasenor-Alva and González-Estrada (2009) generalized the Shapiro-Wilk’s test
to a multivariate version using the above idea. Kim (2015) used the idea to generalize the univariate
skewness and kurtosis. Kim (2016) generalized the Jarque-Bera statistic in (2.1) to the multivariate
statistic JBM using the idea. Kim (2021) proposed the multivariate version of DX in (2.3), DXM by
the same way.

For a univariate statistic G, G(c) = G(cT Z1, . . . , cT Zn) is a statistic based on projection of Zi’s in
the direction c. A way of picking directions c randomly among all possible directions is data driven
directions {Zl/||Zl||, l = 1, . . . , n}. In other words, we consider the normalized standardized scaled
residuals {Zl/||Zl||} whose empirical distribution function follows asymptotically uniform distribution
in the unit p-dimensional sphere Up, instead of all vectors c ∈ Up. The idea is used in several papers.
Fattorini (1986) proposed a modified statistic to the Malkovich and Afifi’s multivariate Shapiro-Wilk
statistic based on the idea. Kim (2006) used the idea to compute the multivariate Cramér-von Mises
statistic. The idea is closely related to the number-theoretic method (NTM) studied by Fang and
Wang (1993). The main purpose of NTM is to find a set of points that is uniformly scatted over a
p-dimensional unit cube.

Kim (2004) approximated Malkovich and Afifi’s multivariate skewness and kurtosis. The multi-
variate statistics are

b∗1,M = max
1≤l≤n

1
n

n∑
i=1

(
Z′l
‖Zl‖

Zi

)32

,

and

b2∗
2,M = max

1≤l≤n

1
n

n∑
i=1

(
Z′l
‖Zl‖

Zi

)4

− 3

2

.
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Table 1: Statistics and p-values for the Iris setosa data

Test JBM DXM JB2p DX2p JBmax DXmax HZ MN
Statistic 12.2712 13.2691 7.9933 7.2518 17.6064 12.6534 0.9488 30.4720
p-value 0.1395 0.1029 0.1529 0.0481 0.219 0.102 0.04995 0.0829

In that paper, it is explained that cl = Zl/||Zl||, l = 1, . . . , n, approximately maximize [(1/n)
∑

i(c′Zi)3]2.
Upon the idea, we can consider the multivariate Jarque-Bera statistics such that

JBmax = max
1≤l≤n

JB
(

Zl

‖Zl‖

)
. (2.6)

Likewise, the statistic DXmax can be defined

DXmax = max
1≤l≤n

DX
(

Zl

‖Zl‖

)
. (2.7)

Meanwhile, Zhou and Shao (2014) considered the p least normal-like directions Θp1 which are
corresponding to p extreme G values evaluated at {Zl/||Zl||} and the unit vector Θp2 = {ek, k =

1, . . . , p}. Finally the multivariate test statistic becomes

1
2p

∑
c∈Θp1∪Θp2

G (c) .

They constructed a kind of multivariate Shapiro-Wilk statistic combined with kurtosis by applying
the idea. On the other hand, Fattorini (1986) statistic is considering all the directions {Zl/||Zl||, l =

1, . . . , n} and detecting the extreme non-normal-like direction.
As it is mentioned, Kim (2021) generalized DX statistic in (2.3) to a multivariate version using

orthogonalization or an empirical standardization of data. That is just considering the direction Θp2.
In this paper, we apply Zhou and Shao (2014)’s idea to generalize DX. Then the test statistic becomes

DX2p =
1

2p

∑
c∈Θp1∪Θp2

DX (c) . (2.8)

Here, DX(c) = DX(cT Z1, . . . , cT Zn) is the statistic of DX evaluated with (cT Z1, . . . , cT Zn).
The statistic DX2p in (2.8) is computed as follows.

1. Compute the standardized residuals Zi = S−1/2(Xi − X̄), i = 1, . . . , n.

2. Compute the DX statistic in (2.3) for each component of (Zk1, . . . ,Zkn), k = 1, . . . , p, i.e. compute
the statistic for Θp2 directions.

3. Compute

DX (c) = DX
(

Zl

‖Zl‖

)
= DX

 ZT
l

‖Zl‖
Z1, . . . ,

ZT
l

‖Zl‖
Zn


for l = 1, . . . , n and choose the biggest p values among n.

4. Average out the 2p values in the above procedures.
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Table 2: Power comparison of the statistics (α = 0.05, p = 2, n = 20)

Alternative DXM JBM DX2p JB2p DXmax JBmax HZ MN
N(0, 1)2 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05

Cauchy(0, 1)2 0.97 0.94 0.98 0.96 0.97 0.95 0.97 0.97
Logistic(0, 1)2 0.14 0.16 0.15 0.17 0.14 0.16 0.10 0.17

(t2)2 0.71 0.72 0.74 0.71 0.70 0.69 0.64 0.74
(t5)2 0.25 0.25 0.27 0.27 0.25 0.28 0.17 0.30

Beta(1, 1)2 0.10 0.00 0.12 0.00 0.14 0.00 0.18 0.00
Beta(2, 2)2 0.04 0.01 0.05 0.01 0.04 0.01 0.06 0.00
Beta(1, 2)2 0.15 0.05 0.15 0.05 0.15 0.04 0.28 0.04

exp(1)2 0.73 0.66 0.79 0.66 0.72 0.62 0.86 0.69
Lognormal(0, 0.5)2 0.51 0.48 0.51 0.51 0.46 0.46 0.58 0.50

Gamma(0.5, 1)2 0.92 0.87 0.97 0.87 0.95 0.83 0.99 0.90
Gamma(5, 1)2 0.21 0.20 0.21 0.22 0.19 0.21 0.24 0.21

(χ2
5)2 0.38 0.34 0.40 0.36 0.35 0.35 0.45 0.37

(χ2
15)2 0.14 0.18 0.16 0.18 0.15 0.16 0.16 0.16

N(0, 1) ∗ t5 0.16 0.17 0.17 0.17 0.15 0.17 0.12 0.17
N(0, 1) ∗ Beta(1, 1) 0.11 0.02 0.11 0.02 0.10 0.02 0.10 0.01

N(0, 1) ∗ exp(1) 0.37 0.36 0.50 0.40 0.49 0.39 0.51 0.40
N(0, 1) ∗ χ2

5 0.27 0.24 0.26 0.23 0.20 0.20 0.22 0.20
NMIX2(0.5, 4, 0, 0) 0.89 0.04 0.86 0.02 0.81 0.02 0.52 0.01

NMIX2(0.5, 0, 0, 0.9) 0.19 0.17 0.20 0.19 0.18 0.18 0.14 0.18
NMIX2(0.5, 4, 0, 0.9) 0.82 0.22 0.80 0.23 0.69 0.25 0.82 0.23
NMIX2(0.9, 4, 0, 0) 0.73 0.66 0.74 0.58 0.67 0.53 0.64 0.55

NMIX2(0.9, 0, 0, 0.9) 0.06 0.07 0.07 0.07 0.05 0.06 0.05 0.06
NMIX2(0.9, 4, 0, 0.9) 0.71 0.65 0.74 0.59 0.67 0.53 0.62 0.54

Avaerage power 0.42 0.32 0.43 0.33 0.40 0.31 0.41 0.32

The univariate statistic JB in (2.1) can be generalized to

JB2p =
1

2p

∑
c∈Θp1∪Θp2

JB (c) (2.9)

by the exactly same way.
The multivariate statistics JBM in Kim (2016) and DXM in Kim (2021) can be written as follows.

JBM =
∑

c∈Θp2

JB (c) =

p∑
k=1

JB (k) . (2.10)

DXM =
∑

c∈Θp2

DX (c) =

p∑
k=1

DX (k) , (2.11)

where JB(k), DX(k) are the JB, DX statistics evaluated for each coordinate (Zk1,Zk2, . . . ,Zkn), k =

1, . . . , p, respectively.
The Henze and Zirkler (1990) statistic Tn, β is frequently recommended as a formal test statistic

for multivariate normality. It is as follows.

Tn, β (X1, . . . ,Xn) = n
(
4I

(
S is singular

)
+ Dn, βI

(
S is nonsingular

))
, (2.12)
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Table 3: Power comparison of the statistics (α = 0.05, p = 2, n = 50)

Alternative DXM JBM DX2p JB2p DXmax JBmax HZ MN
N(0, 1)2 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05

Cauchy(0, 1)2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Logistic(0, 1)2 0.25 0.28 0.28 0.31 0.28 0.31 0.15 0.32

(t2)2 0.97 0.94 0.98 0.97 0.97 0.96 0.95 0.97
(t5)2 0.50 0.51 0.54 0.54 0.50 0.55 0.32 0.56

Beta(1, 1)2 0.32 0.00 0.54 0.00 0.58 0.00 0.68 0.00
Beta(2, 2)2 0.10 0.00 0.11 0.00 0.12 0.00 0.17 0.00
Beta(1, 2)2 0.45 0.10 0.63 0.05 0.63 0.02 0.80 0.12

exp(1)2 0.98 0.94 1.00 0.98 1.00 0.96 1.00 1.00
Lognormal(0, 0.5)2 0.90 0.85 0.96 0.88 0.94 0.86 0.94 0.95

Gamma(0.5, 1)2 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Gamma(5, 1)2 0.53 0.46 0.58 0.49 0.53 0.46 0.53 0.56

(χ2
5)2 0.80 0.74 0.88 0.75 0.85 0.70 0.87 0.86

(χ2
15)2 0.39 0.33 0.41 0.35 0.36 0.33 0.36 0.41

N(0, 1) ∗ t5 0.32 0.34 0.35 0.35 0.31 0.33 0.17 0.32
N(0, 1) ∗ Beta(1, 1) 0.43 0.03 0.44 0.03 0.38 0.02 0.32 0.01

N(0, 1) ∗ exp(1) 0.80 0.73 0.96 0.82 0.97 0.82 0.92 0.88
N(0, 1) ∗ χ2

5 0.72 0.59 0.69 0.53 0.64 0.49 0.52 0.54
NMIX2(0.5, 4, 0, 0) 1.00 0.08 1.00 0.03 1.00 0.02 1.00 0.01

NMIX2(0.5, 0, 0, 0.9) 0.48 0.41 0.49 0.36 0.45 0.33 0.32 0.28
NMIX2(0.5, 4, 0, 0.9) 1.00 0.55 1.00 0.55 1.00 0.51 1.00 0.90
NMIX2(0.9, 4, 0, 0) 0.99 0.99 0.99 0.97 0.99 0.95 0.95 0.97

NMIX2(0.9, 0, 0, 0.9) 0.07 0.06 0.08 0.08 0.08 0.07 0.05 0.08
NMIX2(0.9, 4, 0, 0.9) 0.99 0.98 0.98 0.98 0.98 0.96 0.94 0.98

Avaerage power 0.65 0.52 0.69 0.52 0.68 0.51 0.65 0.55

where

Dn, β =
1
n2

n∑
i, j=1

exp
(
−
β2

2

∥∥∥Yi − Y j

∥∥∥2
)
− 2

(
1 + β2

)− p
2 1

n

n∑
j=1

exp
(
−

β2

2
(
1 + β2) ∥∥∥Y j

∥∥∥2
)

+
(
1 + 2β2

)− p
2

with ||Yi − Y j||
2 = (Xi − X j)′S−1(Xi − X j) and ||Y j||

2 = (X j − X̄)′S−1(X j − X̄). β is defined as

β = βp (n) =
1
√

2

(
2p + 1

4

) 1
p+4

n
1

p+4 .

Mardia (1970, 1974) defined the well known multivariate measure of skewness b1,p and kurtosis
b2,p,

b1,p =
1
n2

n∑
i=1

n∑
j=1

{(
Xi − X̄

)′
S−1

(
X j − X̄

)}3
,

and

b2,p =
1
n

n∑
j=1

{(
X j − X̄

)′
S−1

(
X j − X̄

)}2
.
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Table 4: Power comparison of the statistics (α = 0.05, p = 5, n = 20)

Alternative DXM JBM DX2p JB2p DXmax JBmax HZ MN
N(0, 1)5 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05

Cauchy(0, 1)5 1.00 0.99 1.00 1.00 0.99 0.99 0.99 1.00
Logistic(0, 1)5 0.12 0.14 0.16 0.18 0.14 0.15 0.08 0.18

(t2)5 0.84 0.84 0.90 0.88 0.81 0.80 0.69 0.88
(t5)5 0.26 0.28 0.33 0.34 0.29 0.28 0.14 0.34

Beta(1, 1)5 0.05 0.02 0.01 0.01 0.01 0.01 0.10 0.00
Beta(2, 2)5 0.04 0.02 0.01 0.01 0.02 0.01 0.06 0.00
Beta(1, 2)5 0.08 0.05 0.04 0.03 0.04 0.03 0.18 0.03

exp(1)5 0.66 0.61 0.79 0.74 0.55 0.58 0.81 0.79
Lognormal(0, 0.5)5 0.49 0.49 0.58 0.56 0.42 0.46 0.49 0.60

Gamma(0.5, 1)5 0.91 0.86 0.98 0.94 0.81 0.80 0.99 0.97
Gamma(5, 1)5 0.17 0.17 0.19 0.21 0.16 0.18 0.17 0.21

(χ2
5)5 0.30 0.30 0.38 0.38 0.26 0.29 0.34 0.39

(χ2
15)5 0.12 0.14 0.14 0.15 0.12 0.14 0.12 0.15

N(0, 1)4 ∗ t5 0.10 0.12 0.11 0.11 0.10 0.10 0.06 0.10
N(0, 1)4 ∗ Beta(1, 1) 0.05 0.03 0.04 0.03 0.04 0.04 0.06 0.03

N(0, 1)4 ∗ exp(1) 0.14 0.17 0.17 0.19 0.18 0.19 0.13 0.18
N(0, 1)4 ∗ χ2

5 0.19 0.18 0.14 0.12 0.09 0.11 0.08 0.11
NMIX5(0.5, 4, 0, 0) 1.00 0.04 0.74 0.04 0.05 0.04 0.17 0.03

NMIX5(0.5, 0, 0, 0.9) 0.52 0.43 0.69 0.58 0.42 0.40 0.54 0.65
NMIX5(0.5, 4, 0, 0.9) 0.95 0.39 0.96 0.71 0.53 0.51 0.96 0.82
NMIX5(0.9, 4, 0, 0) 0.86 0.70 0.71 0.52 0.39 0.34 0.32 0.40

NMIX5(0.9, 0, 0, 0.9) 0.09 0.10 0.11 0.11 0.08 0.09 0.07 0.10
NMIX5(0.9, 4, 0, 0.9) 0.84 0.75 0.82 0.59 0.58 0.35 0.40 0.43

Avaerage power 0.43 0.34 0.43 0.37 0.31 0.30 0.35 0.37

The statistic

MN =
nb1,p

6
+

 b2,p − ((n − 1) / (n + 1)) p (p + 2)√[
((n − 3) (n − p − 1) (n − p + 1)) /

(
(n + 1)2 (n + 3) (n + 5)

)]
(8p (p + 2))


2

(2.13)

is considered in Kim (2020). The MN statistic is almost the same statistic proposed by Doornik and
Hansen (2008).

In the next section, we compare the statistics DXM in (2.11), JBM in (2.10), DX2p in (2.8), JB2p

in (2.9), DXmax in (2.7), JBmax in (2.6) through a simulation in terms of power. The Tn, β in (2.12) and
MN in (2.13) are also compared.

3. Example and simulation study

3.1. Example

We consider the well known Fisher’s iris data introduced by Fisher (1936). The data set consists of
50 samples from each of three species of Iris setosa, Iris versicolor, and Iris virginica. Four features,
sepal length, sepal width, petal length, and petal width were measured from each of the three species.

We examine the data on the variety Iris setosa. The statistics JBM , DXM , JB2p, DX2p, JBmax,
DXmax, HZ and MN in (2.6) to (2.13) are computed in Table 1. The corresponding p-values are also
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Table 5: Power comparison of the statistics (α = 0.05, p = 5, n = 50)

Alternative DXM JBM DX2p JB2p DXmax JBmax HZ MN
N(0, 1)5 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04

Cauchy(0, 1)5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Logistic(0, 1)5 0.24 0.26 0.38 0.35 0.30 0.29 0.14 0.41

(t2)5 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00
(t5)5 0.55 0.56 0.71 0.70 0.62 0.61 0.30 0.68

Beta(1, 1)5 0.07 0.01 0.01 0.00 0.01 0.00 0.50 0.00
Beta(2, 2)5 0.05 0.01 0.01 0.00 0.01 0.00 0.14 0.00
Beta(1, 2)5 0.19 0.03 0.09 0.01 0.03 0.02 0.66 0.05

exp(1)5 0.98 0.95 1.00 0.99 0.98 0.93 1.00 1.00
Lognormal(0, 0.5)5 0.89 0.87 0.98 0.94 0.90 0.86 0.96 0.99

Gamma(0.5, 1)5 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Gamma(5, 1)5 0.44 0.43 0.58 0.49 0.40 0.40 0.47 0.67

(χ2
5)5 0.75 0.69 0.89 0.78 0.70 0.64 0.88 0.95

(χ2
15)5 0.30 0.33 0.39 0.34 0.28 0.29 0.28 0.49

N(0, 1)4 ∗ t5 0.22 0.25 0.24 0.21 0.20 0.20 0.09 0.20
N(0, 1)4 ∗ Beta(1, 1) 0.15 0.06 0.06 0.04 0.04 0.03 0.10 0.02

N(0, 1)4 ∗ exp(1) 0.35 0.35 0.59 0.49 0.56 0.43 0.39 0.55
N(0, 1)4 ∗ χ2

5 0.54 0.42 0.39 0.27 0.24 0.21 0.16 0.25
NMIX5(0.5, 4, 0, 0) 1.00 0.11 1.00 0.03 0.19 0.03 0.70 0.03

NMIX5(0.5, 0, 0, 0.9) 0.96 0.84 0.98 0.85 0.85 0.64 0.98 0.90
NMIX5(0.5, 4, 0, 0.9) 1.00 0.86 1.00 0.92 0.98 0.75 1.00 1.00
NMIX5(0.9, 4, 0, 0) 1.00 0.98 1.00 0.84 0.93 0.56 0.92 0.88

NMIX5(0.9, 0, 0, 0.9) 0.16 0.15 0.21 0.18 0.15 0.13 0.11 0.17
NMIX5(0.9, 4, 0, 0.9) 0.99 1.00 0.99 0.96 1.00 0.74 0.91 0.99

Avaerage power 0.60 0.53 0.63 0.54 0.54 0.47 0.60 0.57

presented. We can use the R-package ‘MVN’ (see Korkmaz et al., 2014) or ‘mvnormalTest’ for the
statistic HZ.

According to the result, the multivariate normality of the Iris setosa data is rejected at the signifi-
cance level 0.05 when we use the statistics DX2p or HZ. The p-values of these statistics are slightly
less than 0.05. The other statistics do not reject it. The data set is also analyzed in Looney (1995) and
Small (1980).

3.2. Power comparison

We compare the power of DXM , JBM , DX2p, JB2p, DXmax, JBmax, the Henze and Zirkler (HZ) statistic
and the statistic MN in (2.13) through a simulation. The simulation is conducted at the significance
level α = 0.05 for dimensions p = 2, 5, 10. The sample sizes are n = 20, 50 for p = 2, 5 and
n = 50, 100 for p = 10. The result in Kim (2021) is used for the power of DXM , JBM and HZ for
p = 2, 5. The critical values from the simulation are used except DXM . As for DXM , the critical
values from χ2p are used. Regarding the HZ statistic, we used the simulated critical values given in
Henze and Zirkler (1990). They also gave an approximation to the quantile of HZ for given β and the
dimension p.

N = 5, 000 samples are generated from various alternative distributions. The same alternatives
in Kim (2021) are selected for comparison. They are the distributions with independent marginals
and mixtures of normal distributions. F1 ∗ F2 stands for the distribution with independent marginal
distributions F1 and F2. F p

1 denotes the product of p independent copies of F1. Here Cauchy(0, 1),
Logistic(0, 1), and t-distribution tk are symmetric long-tailed marginals. Beta(1, 1), Beta(2, 2) are
symmetric short-tailed marginals. As for asymmetric marginals Beta(1, 2), exp(1), Lognormal(0, 0.5),
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Table 6: Power comparison of the statistics (α = 0.05, p = 10, n = 50)

Alternative DXM JBM DX2p JB2p DXmax JBmax HZ MN
N(0, 1)10 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Cauchy(0, 1)10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Logistic(0, 1)10 0.20 0.22 0.41 0.41 0.25 0.24 0.08 0.40

(t2)10 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
(t5)10 0.54 0.56 0.80 0.80 0.62 0.61 0.22 0.77

Beta(1, 1)10 0.05 0.01 0.00 0.00 0.00 0.00 0.28 0.00
Beta(2, 2)10 0.03 0.02 0.00 0.00 0.01 0.00 0.11 0.00
Beta(1, 2)10 0.07 0.03 0.02 0.01 0.02 0.02 0.36 0.01

exp(1)10 0.95 0.92 1.00 0.99 0.92 0.88 1.00 1.00
Lognormal(0, 0.5)10 0.87 0.84 0.98 0.97 0.82 0.81 0.86 1.00

Gamma(0.5, 1)10 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Gamma(5, 1)10 0.31 0.31 0.51 0.49 0.31 0.30 0.26 0.61

(χ2
5)10 0.60 0.55 0.87 0.81 0.54 0.52 0.65 0.94

(χ2
15)10 0.21 0.21 0.35 0.32 0.22 0.22 0.17 0.41

N(0, 1)9 ∗ t5 0.16 0.17 0.15 0.14 0.13 0.12 0.05 0.12
N(0, 1)9 ∗ Beta(1, 1) 0.09 0.05 0.04 0.04 0.04 0.04 0.06 0.03

N(0, 1)9 ∗ exp(1) 0.17 0.17 0.25 0.25 0.25 0.22 0.10 0.25
N(0, 1)9 ∗ χ2

5 0.40 0.37 0.22 0.15 0.12 0.12 0.07 0.12
NMIX10(0.5, 4, 0, 0) 1.00 0.09 1.00 0.04 0.04 0.05 0.15 0.03

NMIX10(0.5, 0, 0, 0.9) 1.00 0.96 1.00 1.00 0.94 0.87 1.00 1.00
NMIX10(0.5, 4, 0, 0.9) 1.00 0.96 1.00 1.00 0.96 0.92 1.00 1.00
NMIX10(0.9, 4, 0, 0) 1.00 0.96 0.98 0.56 0.38 0.25 0.33 0.53

NMIX10(0.9, 0, 0, 0.9) 0.29 0.30 0.44 0.29 0.20 0.15 0.37 0.29
NMIX10(0.9, 4, 0, 0.9) 0.99 0.99 0.99 0.80 0.90 0.33 0.86 0.82

Avaerage power 0.56 0.51 0.61 0.52 0.46 0.42 0.48 0.53

Gamma and χ2-distributions are used.
NMIXp(κ, µ, ρ1, ρ2) denotes for the normal mixture

κNp (0, R1) + (1 − κ) Np (µ1, R2) , (3.1)

where Ri is a matrix with diagonal elements equal to 1 and off-diagonal equal to ρi, 0 ≤ ρi < 1,
i = 1, 2. According to Mecklin and Mundfrom (2005, Table 2), the mixture of normal with κ = 0.5
is severely contaminated, symmetric and short-tailed distribution. The mixture with κ = 0.9 is mildly
contaminated, skewed and long-tailed.

Tables 2–7 represent the empirical power of the statistics. The average power of all alternatives
are given in the last row of each table just for references. Kim (2021) mentioned that the power of the
statistic DXM shows better than or comparable to JBM against almost all the alternatives. We can see
the same phenomena for DX2p and JB2p, DXmax andJBmax, respectively. The power of DX2p, DXmax
is better than or comparable to JB2p, JBmax, respectively. In addition, DX2p, DXmax show very good
power against some normal mixtures with the mean vector µ in (3.1) away from 0, as it is like DXM .

By comparing power of DXM , DX2p, and DXmax, the statistics show similar power overall for
the dimensions d = 2 or d = 5, and DX2p shows the best power for some distributions with asym-
metric marginals. In the meantime, DX2p is superior than the other statistics DXM , DXmax in power
for dimension p = 10, and DXmax shows poor power for p = 10. DX2p shows a lot better power
against symmetric marginal alternatives such as Logistic(0, 1), t5 and asymmetric marginal alterna-
tives Gamma(5, 1), χ2

5, and χ2
15 for p = 10. We can see almost the same phenomena for the statistics

JBM , JB2p, and JBmax.
The statistics DXM , JBM , DX2p, JB2p, DXmax, JBmax that are composed of skewness and kurto-
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Table 7: Power comparison of the statistics (α = 0.05, p = 10, n = 100)

Alternative DXM JBM DX2p JB2p DXmax JBmax HZ MN
N(0, 1)10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Cauchy(0, 1)10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Logistic(0, 1)10 0.28 0.32 0.66 0.67 0.42 0.42 0.16 0.64

(t2)10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(t5)10 0.78 0.80 0.97 0.97 0.89 0.86 0.51 0.96

Beta(1, 1)10 0.07 0.01 0.00 0.00 0.00 0.00 0.75 0.00
Beta(2, 2)10 0.04 0.01 0.00 0.00 0.00 0.00 0.23 0.00
Beta(1, 2)10 0.16 0.04 0.03 0.00 0.01 0.01 0.84 0.11

exp(1)10 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Lognormal(0, 0.5)10 0.99 0.98 1.00 1.00 1.00 0.98 1.00 1.00

Gamma(0.5, 1)10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gamma(5, 1)10 0.58 0.53 0.89 0.81 0.57 0.54 0.65 0.99

(χ2
5)10 0.88 0.85 1.00 0.98 0.90 0.83 0.98 1.00

(χ2
15)10 0.38 0.36 0.70 0.60 0.39 0.39 0.40 0.88

N(0, 1)9 ∗ t5 0.27 0.30 0.25 0.25 0.23 0.21 0.06 0.17
N(0, 1)9 ∗ Beta(1, 1) 0.28 0.05 0.07 0.04 0.04 0.04 0.08 0.03

N(0, 1)9 ∗ exp(1) 0.29 0.30 0.64 0.51 0.59 0.43 0.21 0.61
N(0, 1)9 ∗ χ2

5 0.80 0.67 0.46 0.29 0.23 0.18 0.10 0.27
NMIX10(0.5, 4, 0, 0) 1.00 0.25 1.00 0.04 0.04 0.04 0.37 0.02

NMIX10(0.5, 0, 0, 0.9) 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00
NMIX10(0.5, 4, 0, 0.9) 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00
NMIX10(0.9, 4, 0, 0) 1.00 1.00 1.00 0.81 0.79 0.29 0.84 0.91

NMIX10(0.9, 0, 0, 0.9) 0.54 0.55 0.69 0.53 0.44 0.27 0.74 0.36
NMIX10(0.9, 4, 0, 0.9) 1.00 1.00 1.00 0.99 1.00 0.61 1.00 1.00

Avaerage power 0.67 0.61 0.71 0.63 0.59 0.52 0.65 0.65

sis have terribly poor power for the beta marginals that are symmetric shorter tailed or asymmetric,
whereas HZ shows relatively good power for these alternatives.

As with HZ statistic, overall it has comparable or better power than DX2p and JB2p for p = 2 or
p = 5. However for the dimension p = 10, HZ shows poor power than DX2p, JB2p except for the
beta marginals. Although HZ is recommended as an omnibus formal test statistics for multivariate
normality, it seems that the decrease in power for high dimensions is severe than it is expected.

The power of the statistic MN is very similar to that of JB2p and JBM . It shows good power
for some asymmetric Gamma(5, 1) or χ2

15 marginal alternatives when p = 10. The remarkably good
power values among all the statistics are written in bold.

4. Conclusions

The Jarque-Bera statistic is one of the well known statistics for univariate normality. That is based
on the Pearson’s sample skewness and kurtosis, which are the sample standardized third and fourth
moments. Desgagné and de Micheaux (2018) defined the sample second power skewness and kurtosis,
and proposed a normality test statistic based on them. It can be an alternative to the Jarque-Bera
statistic.

Kim (2021) generalized the statistic to a multivariate version using an orthogonalization or an
empirical standardization of data. In this paper, the statistic is modified by considering a few data
driven directions, which are the normalized standardized scaled residuals {Zl/||Zl||, l = 1, . . . , n} with
Zi in (2.5). We consider the p least normal-like directions among {Zl/||Zl||, l = 1, . . . , n} and the
principal component directions. A simulation study shows that the multivariate Desgagné and de
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Micheaux (2018) statistics are better than or comparable to the multivariate Jarque-Bera statistics.
And the modified Desgagné and de Micheaux (2018) statistic proposed in this paper shows better
power for a big dimension.
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