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Abstract
In this paper, we develop the two-step procedure that detects and estimates the position of structural changes

for multivariate nonstationary time series, either on mean parameters or second-order structures. We first in-
vestigate the presence of mean structural change by monitoring data through the aggregated cumulative sum
(CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend.
If no mean change point is detected, the proposed method proceeds to scan the second-order structural change
by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, al-
lowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic
spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and
cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated
space of the spectral matrices over time by applying the dynamic principal component analysis. Different from
existing methods requiring prior information on the type of changes between mean and covariance structures as
an input for the implementation, the proposed algorithm provides the output indicating the type of change and
the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations
and the analysis of two real finance datasets.

Keywords: change point detection, cumulative sum type statistics, locally stationary data, local
wavelet periodogram, dynamic principal component analysis

1. Introduction

Detection of structural change points in univariate time series is an established field with a signif-
icant amount of work developed under parametric or nonparametric approaches; see, for example,
Pitarakis (2004), Bücher et al. (2019), Wang et al. (2020), and Cho and Kirch (2021). Meanwhile,
as applications have emerged that deal with multivariate or high-dimensional time series exhibiting
nonstationary behaviors, recent works have begun addressing the change point estimation in nonsta-
tionary multivariate time series from many fields, including climatology (Heo and Manuel, 2022),
finance (Banerjee and Guhathakurta, 2020), and neuroscience (Kirch et al., 2015; Schröder and Om-
bao, 2019).

The main statistical challenge under a multivariate setting is in proper consideration of its statisti-
cal properties varying in time along with potentially dynamic correlation among multiple time series
to increase the detection power. There have been several works on the change point estimation by
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incorporating the nonstationarity properties through parametric modeling. Among many others, Aue
et al. (2009) studied the volatility and co-volatility structures of multivariate dimensional random vec-
tors, which allow both linear and nonlinear specifications, for testing the existence of second-order
structural changes. Recently, Maciak et al. (2020) proposed self-normalized test statistics based on the
CUSUM of partial residuals to detect a common breakpoint in dependent and nonstationary panels.

Besides the parametric approach, the representation of time series in the frequency domain is a
widely used nonparametric technique in the change point detection problem, and various methods
have been developed under this framework. For univariate time series, Wang (1995) studied the
detection of jump and sharp cusp points in the white noise model using the wavelet transformation,
and Qi et al. (2014) proposed a detection method based on Haar Wavelet and Kolmogorov-Smirnov
statistic. In the multivariate case, Preuss et al. (2015) developed a nonparametric procedure to detect
and estimate multiple structural breaks in the autocovariance function under the multivariate piecewise
stationary process. Then a moving sum type test statistic involving the infinity norm is employed to
measure differences in spectral matrices in adjacent segments of the observed process. Sundararajan
and Pourahmadi (2018) also assumed the multivariate piecewise stationary process and focused on the
detection of sudden changes in the covariance structure through the measure quantifying the difference
of the spectral density matrices. Later Schröder and Ombao (2019) introduced a frequency-specific
change-point detection method for epileptic seizure multi-channel electroencephalograms data again
under the piecewise stationary process.

A locally stationary Wavelet (LSW) process, introduced by (Nason et al., 2000), is also known
to characterize the piecewise constant second-order structure of a time series through time-varying
wavelet spectrum. For the univariate time series, Cho and Fryzlewicz (2012) applied the binary seg-
mentation method on the wavelet periodograms under the assumption of the LSW process to detect
change points in the second-order structure. Cho and Fryzlewicz (2015) further extended their pre-
vious works to the multivariate setting by assuming the multivariate LSW process and proposed a
CUSUM-based binary segmentation algorithm, termed ‘sparsified binary segmentation’ (SBS), to de-
tect the change point from local- and cross- periodograms of multivariate data.

In this article, we develop the two-step procedure that monitors the presence of structural changes,
either on mean parameters or second-order structures, and estimates its position under the framework
of the multivariate LSW process. The proposed procedure first scans the data by computing CUSUM-
type statistic (Aue et al., 2009; Horváth and Hušková, 2012; Cho and Fryzlewicz, 2012) over time
to examine the presence of mean changes, such as mean shift. The CUSUM-based monitoring is a
widely used sequential method to identify the likely position of change point on its trend, often as
where its maximum is attained. In our procedure, we check two practical conditions derived from the
properties of CUSUM-type statistics to decide the presence or absence of the trend change. When it
is concluded that such change exists, its position is estimated accordingly.

If no mean change point is detected, we proceed to the second procedure in the detection of
second-order structural change by modeling the multivariate time series as the multivariate LSW
process (Park et al., 2014; Cho and Fryzlewicz, 2015), allowing localized auto-correlation and cross-
dependence. Based on the local wavelet periodogram defined by Park et al. (2014), spectral matrices
can be estimated at time t and given scale j, providing a measure of the local contribution to both the
auto-covariance and cross-covariance. We then monitor the change point in the lower-dimensional
approximated space for the spectral matrices over time at the finest scale by applying dynamic princi-
pal component analysis (DPCA). The DPCA, first introduced by Brillinger (2001), enables extracting
essential components from the multivariate temporal data by considering the serial dependence on
them, as studied in Peña and Yohai (2016) and Peña et al. (2019).



Change points detection for nonstationary multivariate time series 371

PCA is one of the popular methods for multivariate data analysis but assumes independence among
observations. To further consider serial dependence in multivariate time series data, dynamic PCA is
developed, and in this paper, we apply wavelet transformation before using dynamic PCA. Cho and
Fryzlewicz (2015) showed that the change points in the second-order structure of the multivariate time
series data are detectable from the wavelet periodograms. Also, the local wavelet periodogram we
used in this paper well captures the time-evolving scale-specific auto- and cross-dependence features
of data. Therefore, we expect that the dynamic PCA applied to the wavelet periodogram reflects the
complex structure of the given data.

We specifically identify the point displaying the abnormal change in the first component of dy-
namic PC scores using the CUSUM-type statistic. Unlike existing methods requiring prior informa-
tion on the type of changes between mean and covariance structures as an input for the implementa-
tion, our proposed algorithm investigates the type of changes and provides the estimated location of
occurrence.

The rest of the paper is organized as follows. We propose the two-step procedure for the change-
point detection in Section 2 with brief reviews of the multivariate LSW process and DPCA in Section
2.2, and with the algorithm presented in 2.3. In Section 3, we compare the detection performances
between the proposed and comparison methods through simulation studies, and the extension of the
proposed approach to the multiple change points detection is further illustrated. Section 4 presents
two applications to the finance and stock data. Finally, concluding remarks are provided in Section 5.

2. Methodology

Suppose we observe multivariate time series Xt,T = (X(1)
t,T , . . . , X

(p)
t,T )′, at time points t = 0, . . . ,T − 1,

where T denotes the sample size. For each time series, we assume the following model,

X(d)
t,T = σ(d)

( t
T

) [
Y (d)

t,T

]2
, (2.1)

where Y (d)
t,T is a sequence of auto-correlated and non-stationary standard normal variables such that X(d)

t,T
is scaled χ2(1) distributed, as considered in Cho and Fryzlewicz (2015). Each σ(d)(t/T ) is a piecewise
constant function, and our goal is to detect a change point in σ(d)(t/T ).

We propose the two-step procedure that detects change points on nonstationary time series, either
on location (mean) parameters or second-order structures. The nonstationary time series is specifically
modeled through a multivariate LSW process (Park et al., 2014). Cho and Fryzlewicz (2015) showed
that the change points in the second-order structure were detectable from the wavelet periodograms
under (2.1); thus, we apply multivariate LSW process for detecting the second-order structural change
by allowing time-varying auto-correlation as well as cross-dependence among p time series with
detailed procedures specified in Section 2.2. We note that although our proposed detection method
is developed under (2.1) based on the part of derived asymptotic properties in Cho and Fryzlewicz
(2015), it empirically shows good performance under other general model settings, as we shall see
from examples in Section 2.3 and simulation studies in Section 3.

We assume that there is a subset of time series among X(d)
t,T , d = 1, . . . , p, displaying a change at

one time point after the initial period t = 0 of a structurally stable process. We especially focus on the
presence of less sparse change points; in other words, it is assumed that the moderate proportion of
X(d)

t,T among p time series is affected by the incidence of event leading to the structural change on data.
It is a natural appeal in many practical cases owing to cross-dependence among multiple time series.
The practical level of moderate rate is further discussed through simulation studies in Section 3. We
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note that the proposed algorithm is designed to detect one common change point, and we can apply it
sequentially over the domain to find the following change points. Examples of multiple change points
detection are illustrated through simulation studies (Section 3.3) and real data application (Section
4.2).

2.1. Mean change detection

In this section, we outline the first step for detecting changes in mean parameters, such as mean shift.
Given Xt,T = (X(1)

t,T , . . . , X
(p)
t,T )′, we identify the likely position of mean change point by computing

CUSUM-type statistic (Cho and Fryzlewicz, 2015), for d = 1, . . . , p, over t = 0, . . . ,T − 1 as,

ν(d)
t :=

 1
T

T−1∑
u=0

X(d)
u,T


−1 ∣∣∣∣∣∣∣

√
T − t

T t

t−1∑
u=0

X(d)
u,T −

√
t

T (T − t)

T−1∑
u=t

X(d)
u,T

∣∣∣∣∣∣∣ . (2.2)

Note that the normalizing term is necessary to make the results independent of the level of σ(d)(t/T )
in the model (2.1). A large value of ν(d)

t indicates the potential presence of changes in mean trend at
time point t of dth time series, and the further discussion on the properties of ν(d)

t can be found in Cho
and Fryzlewicz (2012, 2015). We next aggregate CUSUM-type statistics ν(d)

t , d = 1, . . . , p, by using
two methods discussed in Groen et al. (2013); pointwise maximum and pointwise average, defined
respectively by,

νmax
t = max

1≤d≤p
ν(d)

t , ν
avg
t =

1
p

p∑
d=1

ν(d)
t .

The location of mean change point is then estimated as bmax := arg maxt ν
max
t or bavg := arg maxt ν

avg
t .

We note that Cho and Fryzlewicz (2012) illustrated the ineffective performance of pointwise aggre-
gation approaches under the high dimensional situation with extremely sparse change points, such as
large p = 100 with only one time series possessing one change point. However, we empirically exam-
ine through experiments that if the proportion of time series displaying changes at the common point is
moderate or high, roughly above 20%, the pointwise-based estimator bmax and bavg still work superior.
The detailed experimental settings and results are provided in Section 3. Under the moderate change
points assumption, we propose to utilize both νmax

t and νavg
t in the mean change detection procedure

based on their theoretical properties and remarkable finite sample performance as demonstrated in
Groen et al. (2013).

Theoretically, if there exists a mean change at time point b, νmax
t and νavg

t have the global maximum
value at b = bmax = bavg without local maxima. In practice, however, due to finite samples and
unexpected noise, we sometimes observe multimodal νmax

t or νavg
t involving several local maxima. We

thus propose to check two conditions to confirm the presence of mean change; (i) either νmax
t or νmax

t
features unimodal distribution; and (ii) |bmax − bavg| < δ, for reasonably small δ > 0. If both νmax

t and
ν

avg
t display multimodal distributions, we conclude that mean change does not exist and terminate the

detection step. Utilizing both aggregated statistics enables increasing detection power and filtering
out false detection efficiently.

In detail, we check the unimodality of νmax
t (or νavg

t ) as follows. We first define two sets, D1 =

{τ1
1, . . . , τ

1
k} and D2 = {τ2

1, . . . , τ
2
k}, consisting of k time points that divides [0, bmax] and [bmax,T − 1]

with (k + 1) equally spaced intervals, respectively. If there is no exact t matching to τ1
i or τ2

i , i =
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1, . . . , k, we choose the nearest t to defineD1 andD2. Then we calculate Amax statistic as,

Amax :=
k∑

i=2

I
{
νmax
τ1

i−1
> νmax

τ1
i

}
+

k−1∑
j=1

I
{
νmax
τ2

j
< νmax

τ2
j+1

}
, (2.3)

where an indicator function I{B} = 1, when B is satisfied. Here Amax counts the number of local max-
ima by examining the number of increases that occurred at the time before and after bmax. In practice,
obtained νmax

t is often noisy with white noise local fluctuations due to finite sample circumstances,
which may lead to over-counting local maxima. To avoid it, we suggest using the smoothed statistic.
By applying the local polynomial smoothing to νmax

t , we obtain ν̃max
t and use it in calculating (2.3) as

a replacement of νmax
t . Here, we exclude boundary points in calculating Amax to prevent any potential

issues resulting from the boundary bias on ν̃max
t .

Detailed calculation steps, including smoothing, are presented in the algorithm of Section 2.3. The
same procedure is applied to obtain Aavg using νavg

t or ν̃avg
t . We then have Amax × Aavg = 0, if either of

the two aggregated CUSUM statistics is unimodal.
Here is the mean change point detection procedure and the stopping rule. If both conditions,

(i) Amax × Aavg = 0 and (ii) |bmax − bavg| < δ are satisfied, we estimate the change point as b =

(bmax + bavg)/2. In our study, the threshold is set as δ =
√

T/2, achieving the powerful detection from
our experiments as well as from simulation studies in Cho and Fryzlewicz (2015). If at least one of
two conditions is not satisfied, we conclude no mean change point over the domain and move on to
the second procedure described in the next section.

2.2. Second-Order structural change detection

We now present the procedure for detecting the second-order structural change on multivariate time
series by modeling Xt,T with the p-variate LSW process. We briefly review the LSW model in Section
2.2.1 and propose to estimate the change point by implementing the DPCA on the local wavelet
spectral (LWS) matrices in Section 2.2.2.

2.2.1. The multivariate LSW model and spectral matrix

The multivariate LSW process (Cho and Fryzlewicz, 2012; Park et al., 2014) models p-variate nonsta-
tionary time series under rigorously defined time-varying auto-correlation property, especially allow-
ing the individual-specific localized nonstationary behavior for each X(d)

t,T , and the locally stationary
cross-dependence between p series. In Park et al. (2014), individual processes are constructed us-
ing discrete wavelets ψ j = {ψ j,0, ψ j,1, . . . , ψ j,N j−1} of length N j for scales j, founded on {hk}

T−1
k=0 and

{gk}
T−1
k=0 representing the low and high-pass quadrature mirror filters, respectively, commonly used

in the construction of the Daubechies (Daubechies, 1992). Then ψ j’s are specifically obtained as
ψ1,n =

∑
k gn−2kδ0,k = gn for n = 0, . . . ,N1 − 1, and ψ j+1,n =

∑
k hn−2kψ j,k for n = 0 , . . . ,N j+1 − 1. Here

δ0,k is the Kronecker-delta function, and N j = (2 j−1)(Nh−1)+1, where Nh is the number of non-zero
elements within filter {hk}. More details on these wavelets can be found in Nason et al. (2000).

With such wavelets as building blocks, the p-variate LSW process for {Xt,T }
T−1
t=0 , for T = 2J , J ∈ N,

is represented as (Park et al., 2014),

Xt,T =

∞∑
j=1

T−1∑
k=0

V j (k/T )ψ j,t−kz j,k, (2.4)
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where z j,k are (p × 1) uncorrelated random vectors with zero mean and variance-covariance matrix
equal to the identity matrix, and V j(·) is the (p × p) matrix of functions, named as transfer function
matrix. The transfer functions, elements of transfer function matrix, provide a measure of the time-
varying contribution to the variance at each particular scale j for each {X(d)

t,T }
T−1
t=0 and cross-dependence

structure. See Park et al. (2014) for further remarks on V j(·). Then (p× p) LWS matrix describing the
time-scale decomposition of power under multivariate setting at scale j and rescaled time u ∈ (0, 1) is
given as,

S j (u) = V j (u) V′j (u) . (2.5)

Under T = 2J , we can estimate S j(u) up to scale J, by producing (p × p) wavelet periodogram
matrix I j,t = d j,td′j,t, where d j,t = (d(1)

j,t , . . . , d
(p)
j,t )′ whose elements are empirical wavelet coefficient

vector for each X(d)
t,T , calculated as d j,k =

∑T−1
t=0 Xt,Tψ j,k(t). With D jl = 〈Ψ j,Ψl〉 =

∑
τ Ψ j(τ)Ψl(τ),

where Ψ j(τ) :=
∑

k ψ j,kψ j,k−τ, the bias-corrected estimator of the LWS matrix at time point t and scale
j is given by

Ŝ j,t =

J∑
l=1

D−1
jl Ĩl,t, for j ∈ {1, . . . , J} , t ∈ {0, . . . ,T − 1} . (2.6)

Here Ĩ j,t is the smoother version of I j,t for the bias reduction. In particular, Park et al. (2014) employed
the smoothed estimator under a rectangular kernel smoother window of length 2M + 1, written as
Ĩ j,t = (2M+1)−1 ∑M

m=−M I j,t+m. A smoothing span M is selected by generalized cross-validated gamma
deviance criterion (Ombao et al., 2001). See Park et al. (2014) for further associated asymptotic
properties. Consequently, Ŝ j,t provides a measure of the local contribution to both the auto-covariance
and cross-covariance at time t and given scale j.

We propose to examine the presence of the unusual behavior in Ŝ j,t to detect the second-order
structural change. In our study, the change at the finest scale j = J is particularly monitored, based on
results from experimental studies presenting the most powerful detection performance. Korkas and
Fryzlewicz (2017) similarly discussed that change points detected at the finest scales are likely to be
more accurate, and they suggested moving to coarser only if necessary.

2.2.2. Dynamic PCA on LWS matrices

In this section, we describe the estimation of second-order structural change point using ŜJ,t obtained
from (2.6). We note that ŜJ,t contains three-dimensional information, where the (p× p) spectral matrix
is estimated at each time points t = 0, . . . ,T − 1. To reduce the dimensionality of ŜJ,t as well as to
reflect temporal dependence, we apply DPCA (Brillinger, 2001; Hörmann et al., 2015; Peña et al.,
2019), which extracts essential components from the multivariate temporal data by considering the
serial dependence on them. Since the dynamic lower-dimensional representation, i.e., dynamic PC
score, is evaluated at t, the change point detection is fulfilled by monitoring PC scores over time.

The DPCA approximates the original multivariate time series data as close as possible under the
least squares criterion of reconstruction error using q < p components. We specifically perform
DPCA for each dth row of ŜJ,t, denoted as Ŝ(d)

J,t , over t = 0, . . . ,T − 1. Then the dynamic principal
components are defined as the minimizers, over the matrix C(d)

t ∈ Rp×q and the vector ξ(d)
t ∈ Rq, of

T−1∑
t=0

∥∥∥∥∥∥∥Ŝ(d)
J,t −

∑
u

C(d)
t−uξ

(d)
u

∥∥∥∥∥∥∥
2

, (2.7)
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Figure 1: Example I – (a) Two randomly selected time series, and (b) smoothed CUSUM-type statistics, ν̃avg
t and

ν̃max
t . The black dashed vertical line indicates the position where the maximum of distribution is achieved. Green

and red lines indicate time points fromD1 andD2, respectively.

where the L2 norm of a matrix ‖A‖2 :=
∑T

i, j=1 A2
i j for (T × T ) matrix A. Based on the equivalent

relationship between autocovariance time domain representation and spectral density frequency do-
main representation through Fourier transform, the minimum solution for dynamic PC scores ξ(d)

t are
computed as ξ(d)

t =
∑

u b(d)
t−uŜ(d)

J,u with q × p filter b(d)
t , derived from

b(d)
t =

1
2π

∫ 2π

0
B (ω) eitωdω,

where B(ω) = [U1(ω), . . . ,Uq(ω)]
′
, complex conjugates of the transpose of the matrix with its

columns consisting of U j(ω), an jth eigenvector of f(d)
J (ω), the spectral density matrix of Ŝ(d)

J,t . See
Brillinger (2001) for detailed derivations and further reviews.

Among obtained PC scores ξ(d)
t = (ξ(d)

1,t , . . . , ξ
(d)
q,t )′, for t = 0, . . . ,T − 1, we especially examine

the first dynamic PC score ξ(d)
1,t , explaining major variations of data as well as presenting the superior

empirical detection performance, although other orders can be used. Then the CUSUM-type statistic,
ρ(d)

t , for d = 1, . . . , p, is computed following (2.2) by replacing X(d)
u,T with ξ(d)

1,t . We further aggregate
them using pointwise maximum, ρmax

t = max1≤d≤p ρ
(d)
t , and pointwise mean, ρavg

t = (1/p)
∑p

d=1 ρ
(d)
t , as

discussed in Section 2.1. Then we set bmax = arg maxt ρ
max
t and bavg = arg maxt ρ

avg
t . If |bmax−bavg| < δ

is satisfied, we estimate the change point as b = (bmax + bavg)/2. We use the same threshold value
δ =
√

T/2 as in Section 2.1.
For the fast computation of dynamic PC scores, we can extract only the diagonal elements of

ŜJ,t in (2.6), and denote it as wt of length-p vector. Let Ŝdiag := (w0, . . . ,wT−1), which is a p × T
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Figure 2: Example II – (a) Two randomly selected time series and (b) smoothed CUSUM-type statistics, ν̃avg
t and

ν̃max
t . The black dashed vertical line indicates the position where the maximum of distribution is achieved. Green

and red lines indicate time points from D1 and D2, respectively. (c) The first dynamic PC score, ξ1,t, obtained
from DPCA (left) and its CUSUM-statistic ρt (right). The red dashed vertical line indicates b = 100, where the

maximum of ρt is achieved.

matrix. Then, we apply DPCA to the Ŝdiag, and obtain the first dynamic PC score, ξ1,t. Note that,
since we already aggregate the multivariate information in Sdiag by combining diagonal elements of
the spectral matrix from each dimension, we obtain univariate CUSUM-statistic ρt over time without
the pointwise average or max aggregation process. Then the position of the change point is estimated
as b = arg maxt ρt.

2.3. Algorithm

The proposed procedures described in Section 2.1 and 2.2 are summarized in the following algorithm.

Algorithm 1 : Change point detection for nonstationary multivariate time series

1: Given p-variate time series, Xt,T = (X(1)
t,T , . . . , X

(p)
t,T )′, compute CUSUM-type statistic ν(d)

t for each
X(d)

t,T as (2.2) and obtain the aggregated statistics, νmax
t = max1≤d≤p ν

(d)
t and νavg

t = (1/p)
∑p

d=1 ν
(d)
t .
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2: Compute ν̃max
t and ν̃avg

t by applying the local polynomial smoothing to νmax
t and νavg

t , respectively,
and estimate the likely positions of change point, bmax := arg maxt ν̃

max
t and bavg := arg maxt ν̃

avg
t .

In practice, we use the relatively small value of span α = 0.1, the size of the neighborhood in
local smoothing, to prevent over-smoothing.

3: Check the unimodality of the distribution of ν̃max
t and ν̃avg

t as follows.

i: Define two sets, D1 = {τ1
1, . . . , τ

1
k} and D2 = {τ2

1, . . . , τ
2
k}, consisting of k time points that

divides [0, bmax] and [bmax,T − 1] with (k + 1) equally spaced intervals, respectively. In
practice, we set k = 10.

ii: Calculate Amax statistic as in (2.3). In our implementation, four boundary points at both ends
are particularly excluded to alleviate potential boundary bias effects in smoothing,

Amax =

10∑
i=6

I
{
ν̃max
τ1

i−1
> ν̃max

τ1
i

}
+

5∑
j=1

I
{
ν̃max
τ2

j
< ν̃max

τ2
j+1

}
.

iii: Similarly, use newly defineD1 andD2 based on bavg, and calculate Aavg statistic using ν̃avg
t .

4: If Amax × Aavg = 0 and |bmax − bavg| <
√

T/2, make the conclusion on the presence of mean
change and estimate the location of the change point as b = (bmax + bavg)/2.

5: Else, move on to the second-order structural change detection procedure below.

i: Compute an empirical wavelet coefficient (p × 1) vectors for each scale j = 1, . . . , J, for
T = 2J by d j,k =

∑T−1
t=0 Xt,Tψ j,k(t), where k = 0, . . . ,T − 1, and ψ j,k(t) denotes discrete

wavelets specified in Section 2.2.1.

ii: Obtain the (p×p) raw wavelet periodogram matrices, I j,k = d j,kd′j,k, and compute a smoothed
and bias-corrected estimator of the LWS matrices at the finest scale j = J, i.e., ŜJ,t for
t ∈ {0, . . . ,T − 1}, as in (2.6).

iii: Perform DPCA for each dth row of ŜJ,t over t = 0, . . . ,T − 1, and obtain dynamic PC scores
ξ(d)

t = (ξ(d)
1,t , . . . , ξ

(d)
q,t )′ over t.

iv: For the first dynamic PC score, ξ(d)
1,t , compute CUSUM-type statistic;

ρ(d)
t =

 1
T

T−1∑
k=0

ξ(d)
1,t


−1 ∣∣∣∣∣∣∣

√
T − t

T t

t−1∑
u=0

ξ(d)
1,u −

√
t

T (T − t)

T−1∑
u=t

ξ(d)
1,u

∣∣∣∣∣∣∣ , for d = 1, . . . , p.

v: Aggregate them as ρmax
t = max1≤d≤p ρ

(d)
t and ρ

avg
t = (1/p)

∑p
d=1 ρ

(d)
t , and obtain bmax =

arg maxt ρ
max
t and bavg = arg maxt ρ

avg
t .

6: If |bmax − bavg| <
√

T/2 is satisfied, we conclude the presence of the second-order structural
change and estimate its location as b = (bmax + bavg)/2.

We illustrate the practical implementation of the proposed algorithm using two experimental
datasets generated from Model A and Model B in simulation studies of Section 3.

1. Example I: Detection of the mean change.

We generate multivariate time series Xt,T = (X(1)
t,T , . . . , X

(30)
t,T )′ with T = 512 as follows.

X(d)
t,T = αdX(d)

t−1,T + σdε
(d)
t , for t = 0, . . . , 511, d = 1, . . . , 30,
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where autoregressive (AR) coefficients αd
i.i.d.
∼ U(−0.5, 0.5), σd

i.i.d.
∼ U(0.5, 2), and ε(d)

t
i.i.d.
∼ N(0, 4).

For randomly selected 15 time series, new randomly generated coefficients αd and σd are used after
t = 100. Also, ε(d)

t is regenerated at t = 100 from N(µd, 4), where µd ∼ U(2, 5). Therefore the data
display the mean structural change at t = 100. Figure 1(a) displays two randomly selected time
series; one without the change and the other one with the change. Then aggregated and smoothed
CUSUM-type statistics, ν̃avg

t and ν̃max
t , are presented in Figure 1(b). Here, we observe bavg = 102

and bmax = 100 (marked by dashed vertical lines), where green and red lines indicate time points in
D1, andD2, derived from bavg and bmax, respectively. We obtain Amax = 0 and Aavg = 0, indicating
Amax × Aavg = 0, and also |bmax − bavg| = 2 , which is less than

√
T/2 =

√
512/2. Two conditions

are satisfied, we thus conclude the presence of the mean change, and the estimated location is
calculated as b = (bmax + bavg)/2 = (100 + 102)/2 = 101, close to the actual change point at
t = 100.

2. Example II: Detection of the second-order structural change.
We generate multivariate time series Xt,T = (X(1)

t,T , . . . , X
(50)
t,T )′ with T = 512 as follows.

X(d)
t,T = αdX(d)

t−1,T + ε(d)
t , for t = 0, . . . , 511, d = 1, . . . , 50,

where AR coefficient αd
i.i.d.
∼ U(0.5, 1) and ε(d)

t
i.i.d.
∼ N(0, 1). For randomly selected 25 time series,

AR coefficient αd is identically regenerated from U(−0.5, 0.3) and used after t = 100. These
contaminated time series then exhibit second-order structural changes at t = 100. Two generated
time series with and without change are illustrated in Figure 2(a), with ν̃max

t and ν̃avg
t presented in

Figure 2(b). Since neither of two conditions are satisfied, Amax×Aavg = 2×2 , 0 and |bmax−bavg| =

273 >
√

512/2, we conclude the absence of mean structural change. Next, we move on to the
second-order structural change detection procedure, and the first dynamic PC score ξ1,t, computed
from the fast computation approach described in Section 2.2.2, is shown in the left panel of Figure
2(c). The CUSUM-statistic ρt displays its maximum at b = 100, which is equal to the true change
point t = 100, as seen in the right panel of Figure 2(c).

3. Simulation

In this section, we consider three models to investigate the performance of the proposed method
under various scenarios and conduct comparison studies with existing methods. We further illustrate
the sequential application of the proposed algorithm for multiple change points detection problems in
Section 3.3.

3.1. Data generation

• Model A : AR time series with mean structural change.

We generate 50 dimensional multivariate time series Xt,T = (X(1)
t,T , . . . , X

(50)
t,T )′ from X(d)

t,T = αdX(d)
t−1,T +

σdε
(d)
t , for t = 0, . . . ,T − 1, and d = 1, . . . , 50, where αd

i.i.d.
∼ U(−0.5, 0.5), σd

i.i.d.
∼ U(0.5, 2), and

ε(d)
t

i.i.d.
∼ N(0, 4). Let ρ represent the proportion of time series among p affected by structural

changes, i.e., 0 ≤ ρ ≤ 1. For randomly selected bρpc number of time series, αd and σd are
independently regenerated from the same distributions U(−0.5, 0.5) and U(0.5, 2), respectively, at
t = t0. Also, ε(d)

t is regenerated at t = t0 from N(µd, 4), where µd ∼ U(2, 5). Therefore mean
structural change occurs at t0. Here we consider two levels for the sparsity of the change points
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Figure 3: Randomly selected time series from Model A (top), Model B (middle), and Model C (bottom), under
T = 1024, and three time series on the right panels contain structural changes at t0 = 512, marked with red

vertical lines.

across the time series; the moderate case (ρ = 0.7, 0.5, 0.3) and the sparse case (ρ = 0.2, 0.1). Then
we set the length of each time series as T = 512, with the change point located at t0 = 100 or 256.
Additionally, we also consider T = 1024 with change point located at t0 = 100 or 512. The top left
panel in Figure 3 shows the generated time series from Model A without change when T = 1024,
and the top right plot represents the time series with one change in the mean structure at t0 = 512.

• Model B : AR model with second-order structural change.

(i) We generate 50 dimensional multivariate time series Xt,T = (X(1)
t,T , . . . , X

(50)
t,T )′ from X(d)

t,T =

αdX(d)
t−1,T + ε(d)

t , for t = 0, . . . ,T − 1, and d = 1, . . . , 50, where AR coefficients αd
i.i.d.
∼ U(0.5, 1)

and ε(d)
t

i.i.d.
∼ N(0, 1). For randomly selected bρpc number of time series, the same AR(1) model

is employed but with different AR coefficients αd, regenerated from U(−0.5, 0.3) at the point
t = t0. Other settings have remained the same as in Model A. The left panel in the middle
row of Figure 3 shows the generated time series with no change occurred when T = 1024,
and the right plot illustrates a time series including one change point at t0 = 512, where the
second-order structural change has occurred.

(ii) From Model B-(i), ε t = (ε(1)
t , . . . , ε(50)

t )T are generated from Np(0,Σ). Here, (l,m)th component
of Σ, Σl,m = 4(−0.95)|l−m| for l,m = 1, . . . , 25 and Σl,l = 4 for l = 1, . . . , 50. Then for the
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Table 1: Model A – Percentage of the correct identification of the change point at t0 over 100 simulated data

Model A
T t0 ρ Proposed Haar.AVG Haar.MAX SBS. mean SBS.cov

512

100

0.5 100 92 23 100 31
0.3 100 68 23 100 16
0.2 93 53 19 100 12
0.1 69 19 13 100 4

256

0.5 100 90 35 100 78
0.3 100 76 29 100 77
0.2 100 53 27 100 64
0.1 99 28 29 100 45

1024

100

0.5 99 94 39 100 26
0.3 97 76 34 100 24
0.2 82 62 24 100 13
0.1 40 36 18 100 8

512

0.5 100 95 66 100 86
0.3 100 75 51 100 90
0.2 100 56 53 100 82
0.1 98 34 47 100 64

*Boldfaces indicate higher than 95 (%) accuracy.

randomly chosen bρpc elements of ε t are swapped with those of other bρpc randomly chosen
elements at the point t = t0.

• Model C: Moving-Average (MA) time series with second-order structural change.

We generate 50 dimensional time series Xt,T = (X(1)
t,T , . . . , X

(50)
t,T )′ from X(d)

t,T = ε(d)
t + αdε

(d)
t−1 , for

t = 0, . . . ,T − 1, and d = 1, . . . , 50, where MA coefficient αd
i.i.d.
∼ U(0.5, 1) and ε(d)

t
i.i.d.
∼ N(0, 1). For

randomly selected bρpc number of time series, MA coefficient αd is regenerated from U(−0.5, 0.3)
at t = t0. Other settings have remained the same as in Model A. The bottom panels in Figure 3
show the generated time series from Model C with and without a change when T = 1024. It is hard
to detect the presence of change at t = t0 through the visual scanning of the data.

3.2. Evaluation of performance

The proposed algorithm is applied to each simulated set, and it is repeated 100 times. We also try the
following three existing methods for comparison.

• Haar.MAX

Wavelet periodograms are computed using Haar wavelets at scale J, the finest scale, then compute
CUSUM statistic for each time series, which is denoted as ζ(d)

t , for d = 1, . . . , p. Aggregate them
as ζmax

t := max1≤d≤p ζ
(d)
t , and estimate the location of the change point as b = arg maxt ζ

max
t .

• Haar.AVG

Aggregate multivariate CUSUM obtained from Haar.AVG as ζavg
t := (1/p)

∑p
d=1 ζ

(d)
t , and estimate

the location of the change point as b = arg maxt ζ
avg
t .

• SBS (Cho and Fryzlewicz, 2015)

Multiple change point detection algorithm based on the SBS of the second-order structure of a
high dimensional time series by assuming the multivariate LSW process. There are two types of
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Table 2: Model B – Percentage of the correct identification of the change point at t0 over 100 simulated data

Model B - (i)
T t0 ρ Proposed Haar.AVG Haar.MAX SBS.mean SBS.cov

512

100

0.5 98 100 23 57 94
0.3 92 99 28 43 71
0.2 88 97 33 34 56
0.1 78 41 31 25 29

256

0.5 97 100 50 17 100
0.3 97 100 46 13 99
0.2 95 98 55 9 98
0.1 86 76 53 13 96

1024

100

0.5 98 100 17 58 89
0.3 97 100 29 49 70
0.2 93 99 29 49 40
0.1 88 62 36 28 21

512

0.5 98 100 59 13 100
0.3 100 99 69 8 99
0.2 98 100 67 8 100
0.1 93 91 62 3 98

Model B - (ii)
T t0 ρ Proposed Haar.AVG Haar.MAX SBS.mean SBS.cov

512
100 0.7 50 44 54 12 6

0.5 46 40 48 22 14

256 0.7 60 58 62 6 68
0.5 38 58 56 10 66

1024
100 0.7 56 52 52 28 6

0.5 54 44 50 22 8

512 0.7 68 54 64 6 67
0.5 58 48 66 6 66

*Boldfaces indicate higher than 95 (%) accuracy.

algorithms, named SBS.mean and SBS.cov, searching for change points in the mean and the second-
order structures, respectively. Note that the type of changes should be provided as the algorithm
input. The SBS may give multiple estimates of change points even with only one actual change
point presence, owing to its capacity for simultaneous multiple change points detection. For this
case, we evaluate the performance of the SBS by using the estimated point closest to the actual
change point t0.

For each method, we compute the percentage of accurate position identification at the true location
t = t0 over 100 simulated data. As specified in Section 2.1, we set δ =

√
T/2, and if the estimated point

lies within the distance of
√

T/2 from the true change point, the result is counted as the accurate one
for all methods. The results are summarized in Tables 1–3. We highlight the percentages achieving
an accuracy higher than 95% with boldfaces.

Table 1 shows the results from Model A, displaying the mean change in the data. Here SBS.mean
works best and provides higher than 95% accuracy rates for all cases. However, SBS.cov, Haar.AVG,
and Haar.MAX shows poor performance for all cases. The proposed method provides comparable
results when the sparsity is moderate, ρ = 0.3, 0.5, and we observe the diminished detection power as ρ
decreased, as discussed in Cho and Fryzlewicz (2015). However, it still shows improved performance
than SBS.cov, Haar.AVG, and Haar.MAX display. The novelty of our algorithm is in not requiring the
input about the types of change in advance, the mean or covariance, as the SBS algorithm does. The
SBS works superior when the user correctly specifies the type of the change, but it collapses when the
wrong information is entered. The proposed method displays higher than 70% accuracy levels when
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Table 3: Model C – Percentage of the correct identification of the change point at t0 over 100 simulated data

Model C
T t0 ρ Proposed Haar.AVG Haar.MAX SBS.mean SBS.cov

512

100

0.5 98 99 0 57 17
0.3 100 91 22 43 7
0.2 95 72 17 34 5
0.1 73 47 21 25 3

256

0.5 98 100 27 17 94
0.3 100 95 37 13 88
0.2 99 78 32 9 87
0.1 86 48 35 13 54

1024

100

0.5 98 100 14 58 9
0.3 100 93 17 49 4
0.2 97 91 23 49 4
0.1 81 49 24 28 1

512

0.5 99 99 53 13 98
0.3 99 94 49 9 87
0.2 98 89 45 8 93
0.1 85 60 56 4 84

*Boldfaces indicate higher than 95(%) accuracy.

the sparsity is not extreme, ρ ≥ 0.2. Under the sparse case ρ = 0.1, our approach based on both max
and average aggregation displays improved detection power compared to Haar.AVG or Haar. MAX
show.

Results from Model B are presented in Table 2. For the Model B - (i), it shows superior detection
performances from the proposed method and Haar.AVG. The SBS.cov works good with the change
that occurs at the middle location of the time series but shows ineffective performance when t0 = 100
with sparse cases, ρ = 0.2, 0.1. Since the coefficient of the AR model can have negative values at
the change point t = t0 owing to the randomness in the data generation, it induces spuriously large
values of CUSUM statistic, not from the actual location of the change point. Due to the same reason,
Haar.max performs far behind for all cases. Since our method utilizes both aggregated CUSUM-type
statistics, pointwise maximum and average statistics, the performance is not severely suffered from
this phenomenon. For the Model B - (ii), all methods provide accuracy lower than 70%. However,
proposed method works similar to the Haar.AVG and SBS.cov, and works better than SBS.cov when
t0 = 100.

Lastly, Table 3 shows that all comparison methods show low detection power in Model C under
the MA(1) model. As seen at the bottom panel in Figure 3, the change point is not visually recognized
over time. However, our proposed method still shows good detection power in almost all cases with
high accuracy rates.

3.3. Extension to the multiple change points detection

Although the proposed algorithm is designed to detect one common change point in the multivariate
time series, we can extend it to detect multiple change points by combining the segmentation tech-
nique in Cho and Fryzlewicz (2012). To do this, we specifically apply the binary segmentation method
of Cho and Fryzlewicz (2012) to our algorithm as follows: If the proposed algorithm detects a change
point at t = b, we divide the time series into two parts: [0, b] and [b + 1,T − 1], and the algorithm
is applied to each segment. Once another change point is detected, we sequentially repeat the same
process with further segmentation until no more change point is observed.

We illustrate the segmentation process and its performance with the following simulated data
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Figure 4: Randomly selected four time series with the presence of three change points at t = 100, 250, and 350.
Estimated locations of change points are marked with red solid vertical lines, and the actual locations of change

points are marked with blue dashed vertical lines.

example. First, 30 dimensional multivariate time series X∗t,T = (X∗(1)
t,T , . . . , X∗(30)

t,T )′ is generated from

X∗(d)
t,T = α∗dX∗(d)

t−1,T + ε∗(d)
t , for t = 0, . . . ,T − 1, d = 1, . . . , 30, where T = 512, α∗d

i.i.d.
∼ U(0.5, 1)

and ε∗(d)
t

i.i.d.
∼ N(0, 1). Here we contaminate the data at point t = 100 for 10 randomly selected time

series, by using AR coefficients α∗d independently regenerated from U(−0.5, 0.3). We then additionally
generate the other 20 dimensional multivariate time series X†t,T = (X†(1)

t,T , . . . , X†(20)
t,T )′ from X†(i)t,T =

CiI(t ≥ 250) + α†i X†(i)t−1,T + ε†t (i) for t = 0, . . . ,T − 1, i = 1, . . . , 20, where T = 512, constant Ci
i.i.d.
∼

U(0.5, 5), I(·) is an indicator function, and other parameters are set as the same in X∗t,T . For the
randomly selected 10 time series, α†i is regenerated from U(−0.5, 0.3) at t = 100, and from U(0.5, 1)
at t = 350. Consequently, 50-variate time series Xt,T = {(X∗t,T )′, (X†t,T )′)}′ display one mean change at
t = 250 and two second-order structural changes at t = 100 and 350. Figure 4 illustrates the randomly
selected four time series under this setting.

We apply the proposed algorithm sequentially with the binary segmentation technique, and the
locations of change points are estimated as t = 98, 253, and 345 (red vertical lines in Figure 4), very
close to the actual locations of change points at t = 100, 250, and 350. A more precise extension for
the multiple change points detection is left for future research.

4. Real data application

In this section, we present the application of the proposed procedures to the two real data and conduct
comparison studies.
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Figure 5: (Left) original financial variables and (Right) the corresponding log returns between October 28, 2019,
and July 27, 2020. The solid, dotted, dashed vertical lines indicate the estimated locations of detected change

points from the proposed method, SBS.cov, and Haar.AVG, respectively.

4.1. Financial data

We consider four financial variables with 897 observations: S&P 500, Dow Jones industrial average
(DJI), NASDAQ, and crude oil price from July 9, 2018 to July 27, 2020. Four plots in the left panel
of Figure 5 show the raw collected data, and four plots in the right panel display their log returns. For
a clearer presentation of the estimation results, time series plots are generated from October 28, 2019
to July 27, 2020, although we use all data in the detection process. The log return values are used
in the detection procedures for all methods, and the vertical lines in each plot represent the estimated
locations of change points from corresponding methods. The estimated locations from the proposed
method, SBS.cov, and Haar.AVG are February 19, 2020, February 26, 2020, and March 3, 2020,
respectively.

The proposed method captures the second-order structural change with its estimated location close
to February 20, 2020, corresponding to the date of the stock market plunge due to the COVID-19
outbreak. It is well-known that the 2020 stock price crash, beginning on February 20, 2020, lasted
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Figure 6: (Left) original stocks and (Right) the corresponding log-returns from May 1, 2000, to January 15,
2015. The red vertical lines represent the estimated location of change points from the proposed method.

approximately a month until April 7, 2020. We observe the relatively accurate detection of the start
date of such sharp plunge from our method.

4.2. Stock data

We apply the proposed method to 12 stocks of the S&P100 with 4097 observations: AXP (American
Express), BAC (Bank of America), BK (BNY Mellon), BLK (BlackRock), COF (Capital One), GS
(Goldman Sachs), JPM (JPMorgan Chase), MET (MetLife), MS (Morgan Stanley), SCHW (Charles
Schwab), USB (U.S. Bank), and WFC (Wells Fargo) from May 1, 2000 to August 11, 2016. Figure
6 shows the four raw stock variables and their log returns among 12 stocks. Again, for a clearer
visualization of the estimation results, we generate the times series plot only from May 1, 2000 to
January 15, 2015. The detection procedures are implemented on log return values, and we especially
apply the segmentation method in Section 3.3 for the multiple change points detection.
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The locations of estimated change points obtained from the proposed method are represented by
the red vertical lines in Figure 6. Note that they are detected as second-order structural changes.
One of estimated points at July 9, 2002 is quite close to the day of the stock market plunge due
to WorldCom’s bankruptcy on July 21, 2002. Indeed it was the largest scale of bankruptcy filing
in United States history at that time. Two other detected change points at December 11, 2007, and
August 14, 2009, capture the European financial crisis that occurred between 2007 and 2009. Finally,
the estimated point at August 26, 2011, corresponds to the 2011 European sovereign debt crisis.
We empirically confirm the superior detection performance of our proposed method even with the
presence of multiple change points.

5. Concluding remarks

In this paper, we consider a change point detection problem for nonstationary multivariate time se-
ries data. We provide the two-step procedure that detects and estimates the location of mean change
or second-order structural changes in data. The mean change detection procedure is based on the
CUSUM-type statistics. If no mean change is detected, we move on to the second-order structural
change point detection procedure, built on the novel combination of the LWS modeling and DPCA.
The time localized property of the local wavelet spectrum enables modeling the time-varying auto-
and cross-correlations of multivariate time series, and further, by applying DPCA to the spectrum, we
could extract lower dimensional information of second-order structure over time. Simulation studies
show that the proposed algorithm efficiently detects both types of changes, either in mean or second-
order structures. Note that we assume a specific underlying model in (2.1) where wavelet transforma-
tion works well, but the proposed method shows superiority under various settings. Also, although the
proposed algorithm is designed to detect one change point, we could extend it to the multiple change
points problem using the segmentation technique with empirically confirmed remarkable performance
through simulation examples and real data examples.

We have several future research directions. One direction is in developing theoretical properties
of the proposed estimator based on the part of asymptotic properties derived in Cho and Fryzlewicz
(2015). Also, we can improve some ad-hoc procedures in the algorithm. For example, in the second-
order change detection procedure, examining the LSW matrices over all scales rather than the finest
scale may increase the detection power by using richer information. The dimension reduction of LSW
matrices from all scales should be considered in future research. Furthermore, we can use the second
or third dynamic PC scores to scan data. Those PC scores may detect minor change points in the
multivariate time series that the first PC scores could overlook.
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