DOI QR코드

DOI QR Code

압력용기용 SA372강의 수소취성 저항성에 미치는 시편 형태의 영향

Influence of Specimen Geometry and Notch on Hydrogen Embrittlement Resistance of SA372 Steel for Pressure Vessel

  • 신희창 (서울과학기술대학교 신소재공학과) ;
  • 김상규 (서울과학기술대학교 신소재공학과) ;
  • 김재윤 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Hee-Chang Shin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Sang-Gyu Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jae-Yun Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Byoungchul Hwang (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2023.06.05
  • 심사 : 2023.07.19
  • 발행 : 2023.07.27

초록

The influence of specimen geometry and notch on the hydrogen embrittlement of an SA372 steel for pressure vessels was investigated in this study. A slow strain-rate tensile (SSRT) test after the electrochemical hydrogen charging method was conducted on four types of tensile specimens with different directions, shapes (plate, round), and notches. The plate-type specimen showed a significant decrease in hydrogen embrittlement resistance owing to its large surface-to-volume ratio, compared to the round-type specimen. It is well established that most of the hydrogen distributes over the specimen surface when it is electrochemically charged. For the round-type specimens, the notched specimen showed increased hydrogen susceptibility compared with the unnotched one. A notch causes stress concentration and thus generates lots of dislocations in the locally deformed regions during the SSRT test. The solute hydrogen weakens the interactions between these dislocations by promoting the shielding effect of stress fields, which is called hydrogen-enhanced localized plasticity mechanisms. These results provide crucial insights into the relationship between specimen geometry and hydrogen embrittlement resistance.

키워드

과제정보

This study was supported by the Research Program funded by the SEOULTECH (Seoul National University of Science and Technology).

참고문헌

  1. A. Nagao, M. L. Martin, M. Dadfarnia, P. Sofronis and I. M. Robertson, Acta Mater., 74, 244 (2014).
  2. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao and J. Yang, Int. J. Hydrogen Energy, 37, 1048 (2012).
  3. M. Koyama, M. Rohwerder, C. C. Tasan, A. Bashir, E. Akiyama, K. Takai, D. Raabe and K. Tsuzaki, Mater. Sci. Technol., 33, 1481 (2017).
  4. H. K. D. H. Bhadeshia, ISIJ Int., 5, 24 (2016).
  5. R. A. Oriani, Acta Metall., 18, 147 (1970).
  6. J. Y. Lee and S. M. Lee, Surf. Coat. Technol., 28, 301 (1986).
  7. A. J. Kumnick and H. H. Johnson, Acta Metall., 28, 33 (1980).
  8. X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang and X. Song, Acta Metall. Sin., 33, 759 (2020).
  9. X. Y. Cheng, H. Li and X. B. Cheng, Micron, 103, 22 (2017).
  10. H. Asahi, D. Hirakami and S. Yamasaki, ISIJ Int., 43, 527 (2003).
  11. Y. Li, B. Gong, X. Li, C. Deng and D. Wang, Int. J. Hydrogen Energy, 43, 15575 (2018).
  12. X. Lu, D. Wang, D. Wan, Z. B. Zhang, N. Kheradmand and A. Barnoush, Acta. Mater., 179, 36 (2019).
  13. A. Diaz, J. M. Alegre and I. I. Cuesta, Theor. Appl. Fract. Mech., 90, 294 (2017).
  14. S. G. Kim, J. Y. Kim and H. C. Sin, Korean J. Mater. Res., 32, 466 (2022).
  15. B. Hwang, Y. G. Kim, S. Lee, Y. M. Kim, N. J. Kim and J. Y. Yoo, Metall. Mater. Trans. A, 36, 2107 (2005).
  16. A. Takaichi, Y. Kajima, N. Kittikundecha, H. L. Htat, H. H. W. Cho, T. Hanawa, T. Yoneyama and N. Wakabayashi, J. Mech. Behav. Biomed. Mater., 102, 103496 (2020).
  17. J. Lu, H. Yu and S. Yang, Mater. Sci. Eng., A, 803, 140493 (2021).
  18. M. J. Kim, Y. W. Jang, Y. H. Yoo, J. J. Kim and J. G. Kim, J. Korean Electrochem. Soc., 13, 96 (2010).
  19. D. P. Escobar, C. Minambres, L. Duprez, K. Verbeken and M. Verhaege, Corros. Sci., 53, 3166 (2011).
  20. Y. Bao, Eng. Fract. Mech., 72, 502 (2005).
  21. C. D. Beachem, Metall. Mater. Trans. B, 3, 441 (1972).
  22. A. R. Troiano, Metallogr., Microstruct., Anal., 5, 557 (2016).
  23. M. Pinson, H. Springer, T. Depover and K. Verbeken, Mater. Sci. Eng., A, 859, 144204 (2022).