DOI QR코드

DOI QR Code

Evaluation of Output Performance of Flexible Thermoelectric Energy Harvester Made of Organic-Inorganic Thermoelectric Films Based on PEDOT:PSS and PVDF Matrix

PEDOT:PSS 및 PVDF 기반의 유-무기 열전 필름으로 제작된 플렉서블 열전 에너지 하베스터의 발전 성능 평가

  • Yujin Na (School of Materials Science and Engineering, Kyungpook National University) ;
  • Kwi-Il Park (School of Materials Science and Engineering, Kyungpook National University)
  • 나유진 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박귀일 (경북대학교 신소재공학부 금속신소재공학전공)
  • Received : 2023.06.29
  • Accepted : 2023.07.18
  • Published : 2023.07.27

Abstract

Thermoelectric (TE) energy harvesting, which converts available thermal resources into electrical energy, is attracting significant attention, as it facilitates wireless and self-powered electronics. Recently, as demand for portable/wearable electronic devices and sensors increases, organic-inorganic TE films with polymeric matrix are being studied to realize flexible thermoelectric energy harvesters (f-TEHs). Here, we developed flexible organic-inorganic TE films with p-type Bi0.5Sb1.5Te3 powder and polymeric matrices such as poly(3,4-eethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly (vinylidene fluoride) (PVDF). The fabricated TE films with a PEDOT:PSS matrix and 1 wt% of multi-walled carbon nanotube (MWCNT) exhibited a power factor value of 3.96 µW·m-1·K-2 which is about 2.8 times higher than that of PVDF-based TE film. We also fabricated f-TEHs using both types of TE films and investigated the TE output performance. The f-TEH made of PEDOT:PSS-based TE films harvested the maximum load voltage of 3.4 mV, with a load current of 17.4 µA, and output power of 15.7 nW at a temperature difference of 25 K, whereas the f-TEH with PVDF-based TE films generated values of 0.6 mV, 3.3 µA, and 0.54 nW. This study will broaden the fields of the research on methods to improve TE efficiency and the development of flexible organic-inorganic TE films and f-TEH.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A2001658 and No. 2022R1A2C1003853).

References

  1. K.-I. Park, J. H. Son, G.-T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang and K. J. Lee, Adv. Mater., 26, 2514 (2014).
  2. C. Nam, Y. Na, S. C. Park, H. Kim, C. K. Jeong, G.-T. Hwang and K.-I. Park, J. Mater. Chem. A, 11, 559 (2023).
  3. C. K. Jeong, D. Y. Hyeon, G.-T. Hwang, G.-J. Lee, M.-K. Lee, J.-J. Park and K.-I. Park, J. Mater. Chem. A, 7, 25481 (2019).
  4. D. Y. Hyeon, C. Nam, S. S. Ham, G.-T. Hwang, S. Yi, K. T. Kim and K.-I. Park, Adv. Electron. Mater., 7, 2000969 (2021).
  5. S. S. Ham, G.-J. Lee, D. Y. Hyeon, Y.-G. Kim, Y.-W. Lim, M.-K. Lee, J.-J. Park, G.-T. Hwang, S. Yi, C. K. Jeong and K.-I. Park, Composites, Part B, 212, 108705 (2021).
  6. J. M. Park, D. Y. Hyeon, H.-S. Ma, S. Kim, S.-T. Kim, Y. N. Nguyen, I. Son, S. Yi, K. T. Kim and K.-I. Park, J. Alloys Compd., 884, 161119 (2021).
  7. S. Kim, Y. Na, C. Nam, C. K. Jeong, K. T. Kim and K.-I. Park, Nano Energy, 103, 107824 (2022).
  8. S.-T. Kim, J. M. Park, K.-I. Park, S.-E. Chun, H. S. Lee, P.-P. Choi and S. Yi, J. Mater. Sci. Technol., 94, 175 (2021).
  9. D. Enescu, Green Energy Advances, p.156, IntechOpen, England (2019).
  10. Z. Wang, V. Leonov, P. Fiorini and C. Van Hoof, Sens. Actuators, A, 156, 95 (2009).
  11. B. Cai, H. Hu, H.-L. Zhuang and J.-F. Li, J. Alloys Compd., 806, 471 (2019).
  12. N. Jaziri, A. Boughamoura, J. Muller, B. Mezghani, F. Tounsi and M. Ismail, Energy Rep., 6, 264 (2020).
  13. Y. Na, S. Kim, S. P. R. Mallem, S. Yi, K. T. Kim and K.-I. Park, J. Alloys Compd., 924, 166575 (2022).
  14. L. Wang and K. Zhang, Energy Environ. Mater., 3, 67 (2020).
  15. S. Xu, M. Hong, X.-L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou and Z.-G. Chen, Chem. Mater., 31, 5238 (2019).
  16. S. Liu, H. Deng, Y. Zhao, S. Ren and Q. Fu, RSC Adv., 5, 1910 (2015).
  17. J. Wu, Y. Sun, W.-B. Pei, L. Huang, W. Xu and Q. Zhang, Synth. Met., 196, 173 (2014).
  18. S. Xin, N. Yang, F. Gao, J. Zhao, L. Li and C. Teng, Mater. Chem. Phys., 212, 440 (2018).
  19. H. Yan, N. Sada and N. Toshima, J. Therm. Anal. Calorim., 69, 881 (2002).
  20. Y. Hu, H. Shi, H. Song, C. Liu, J. Xu, L. Zhang and Q. Jiang, Synth. Met., 181, 23 (2013).
  21. K. Hiraishi, A. Masuhara, H. Nakanishi, H. Oikawa and Y. Shinohara, Jpn. J. Appl. Phys., 48, 071501 (2009).
  22. C. S. Kim, G. S. Lee, H. Choi, Y. J. Kim, H. M. Yang, S. H. Lim, S.-G. Lee and B. J. Cho, Appl. Energy, 214, 131 (2018). https://doi.org/10.1016/j.apenergy.2018.01.074
  23. Y. Wang, M. Hong, W.-D. Liu, X.-L. Shi, S.-D. Xu, Q. Sun, H. Gao, S. Lu, J. Zou and Z.-G. Chen, Chem. Eng. J., 397, 125360 (2020).
  24. H. Jin, J. Li, J. Iocozzia, X. Zeng, P.-C. Wei, C. Yang, N. Li, Z. Liu, J. H. He, T. Zhu, J. Wang, Z. Lin and S. Wang, Angew. Chem., Int. Ed., 58, 15206 (2019).
  25. Z. Fan, P. Li, D. Du and J. Ouyang, Adv. Energy Mater., 7, 1602116 (2017).
  26. D. Park, M. Kim and J. Kim, Polymers, 13, 210 (2021).
  27. X. Wang, F. Meng, T. Wang, C. Li, H. Tang, Z. Gao, S. Li, F. Jiang and J. Xu, J. Alloys Compd., 734, 121 (2018).
  28. Y. Du, Y. Shi, Q. Meng and S. Z. Shen, Synth. Met., 261, 116318 (2020).
  29. H. Song and K. Cai, Energy, 125, 519 (2017).
  30. J. Xiong, F. Jiang, W. Zhou, C. Liu and J. Xu, RSC Adv., 5, 60708 (2015).
  31. C. Zhou, C. Dun, B. Ge, K. Wang, Z. Shi, G. Liu, D. L. Carroll and G. Qiao, Nanoscale, 10, 14830 (2018).
  32. C. Dun, C. A. Hewitt, H. Huang, J. Xu, D. S. Montgomery, W. Nie, Q. Jiang and D. L. Carroll, ACS Appl. Mater. Interfaces, 7, 7054 (2015).