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Abstract

Background: Surgical resection is the standard treatment for early-stage lung cancer. 
Since postoperative lung function is related to mortality, predicted postoperative lung 
function is used to determine the treatment modality. The aim of this study was to eval-
uate the predictive performance of linear regression and machine learning models. 
Methods: We extracted data from the Clinical Data Warehouse and developed three 
sets: set I, the linear regression model; set II, machine learning models omitting the 
missing data: and set III, machine learning models imputing the missing data. Six ma-
chine learning models, the least absolute shrinkage and selection operator (LASSO), 
Ridge regression, ElasticNet, Random Forest, eXtreme gradient boosting (XGBoost), 
and the light gradient boosting machine (LightGBM) were implemented. The forced ex-
piratory volume in 1 second measured 6 months after surgery was defined as the out-
come. Five-fold cross-validation was performed for hyperparameter tuning of the ma-
chine learning models. The dataset was split into training and test datasets at a 70:30 
ratio. Implementation was done after dataset splitting in set III. Predictive performance 
was evaluated by R2 and mean squared error (MSE) in the three sets. 
Results: A total of 1,487 patients were included in sets I and III and 896 patients 
were included in set II. In set I, the R2 value was 0.27 and in set II, LightGBM was the 
best model with the highest R2 value of 0.5 and the lowest MSE of 154.95. In set III, 
LightGBM was the best model with the highest R2 value of 0.56 and the lowest MSE of 
174.07. 
Conclusion: The LightGBM model showed the best performance in predicting postop-
erative lung function.

Keywords: Lung Cancer; Chronic Obstructive Pulmonary Disease; Postoperative Lung 
Function; Linear Regression; Machine Learning

Introduction

Lung cancer is the leading cause of cancer-related 
deaths worldwide and chronic obstructive pulmonary 

disease (COPD) is the most common comorbid disease 
in patients with lung cancer1-3. Since lung cancer risk 
increases with age, the incidence rates of lung cancer 
are higher in elderly people. The lung parenchymal 
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structure changes with age, resulting in the loss of 
elastic recoil and senile hyperinflation4. These previous 
studies showed that patients with lung cancer tended 
to have decreased lung function.

Surgical resection is the standard treatment for ear-
ly-stage lung cancer. Patients with higher perioperative 
risks such as COPD and older age are at higher risk for 
postoperative complications and mortality after resec-
tion5. The assessment of perioperative risk is essential 
because surgery is an invasive treatment, and it affects 
postoperative lung function6,7. Since postoperative lung 
function is related to the quality of life and mortality, 
treatment modalities are determined according to the 
predicted postoperative lung function. The predicted 
postoperative forced expiratory volume in 1 second 
(ppoFEV1) is widely used as a parameter to represent 
postoperative lung function8,9. Several methods are 
used to compute ppoFEV1, such as a formula based on 
the number of resected segments10, quantitative com-
puted tomography (CT), and perfusion scintigraphy9.

In recent clinical practice, minimally invasive surgical 
procedures such as video-assisted thoracic surgery 
have become routine11,12. A previous study showed that 
the actual postoperative lung function differed from the 
ppoFEV1 depending upon the extent of the resection13. 
Patients with COPD experienced smaller decreases 
in FEV1 than in the ppoFEV1

14. These studies showed 
a discrepancy between the actual postoperative lung 
function and the ppoFEV1. Previous attempts have 
been made to predict postoperative lung function more 
accurately, but these were limited by the wide diversity 
of individual characteristics of the patients. Therefore, 
by predicting postoperative lung function for each indi-
vidual more precisely, personalized cancer treatment 
can be made available. 

Recently, machine learning methods have begun to 
be used in many different clinical settings for predict-
ing outcomes15. Previous studies showed that machine 
learning could outperform conventional statistical 
models, such as logistic regression16,17. The objective 
of this study was to compare the conventional statisti-
cal model of linear regression with the machine learn-
ing model to predict postoperative pulmonary lung 
function in patients with lung cancer. 

Materials and Methods 

1. Study design and database
We retrospectively investigated the Clinical Data Ware-
house (CDW) database from the Department of Med-
ical Informatics at College of Medicine, The Catholic 
University of Korea. A total of 4,342 patients with lung 

cancer who underwent surgery with mediastinal lymph 
node dissection at seven hospitals in the Catholic Uni-
versity of Korea (Seoul St. Mary’s Hospital, Incheon St. 
Mary’s Hospital, Yeouido St. Mary’s Hospital, Eunpyeo-
ng St. Mary’s Hospital, Bucheon St. Mary’s Hospital, St. 
Vincent’s Hospital, and Uijeongbu St. Mary’s Hospital) 
from 1997 to 2019 were extracted from the database. 
Of them, 2,855 patients were excluded due to missing 
preoperative FEV1 values or 6-month postoperative 
FEV1 values, as shown in Figure 1. Finally, 1,487 pa-
tients were selected for analysis. Since there were 
many missing values in the post-bronchodilator pul-
monary function test (PFT) values, we used pre-bron-
chodilator PFT values; predicted FEV1 and forced vital 
capacity (FVC) (%) throughout the study. 

2. Variable selection and outcome definition 
Demographic data including age, gender, body mass 
index, smoking history, type of surgery, histologic 
features, tumor stage according to the eighth tu-
mor-node-metastasis (TNM) classification, cancer 
location, blood test results, comorbidities, usage of 
COPD medications, treatment modalities (neoadjuvant 
chemotherapy, adjuvant chemotherapy, palliative che-
motherapy, neoadjuvant radiotherapy, adjuvant radio-
therapy, and palliative therapy) and pre-bronchodilator 
PFT results were collected. The continuous variables 
are presented as the mean with standard deviation and 
the categorical variables are expressed as numbers 
with percentages. Regarding smoking history, patients 
were grouped into never smokers if they had smoked 
fewer than 100 cigarettes or never smoked in their life-
time, and as ever smokers if they had smoked at least 
100 cigarettes in their lifetime. The types of surgery 
were grouped into three groups, the sublobar resec-
tion group if patients had received sublobar resection 
(segmentectomy, wedge resection, etc.), the lobecto-
my group if patients had received lobectomy, and the 
others group. PFT was performed in accordance with 
the American Thoracic Society/European Respiratory 
Society standardization guidelines. To measure the ef-
fect of COPD medications and determine whether the 
point of time when the COPD medications began to af-
fect the outcome, the date when the patient started the 
medicine was considered to be a variable. V0 was de-
fined as the time interval from 3 months before surgery 
to the surgery date and V1 was defined as 6±3 months 
after surgery. For example, roflumilast V1 indicated that 
the patients had taken roflumilast 6±3 months after 
surgery. The baseline PFT results, including FEV1, FVC, 
the FEV1/FVC ratio, diffusing capacity of the lung for 
carbon monoxide, the residual volume (RV)/total lung 
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capacity (TLC) ratio, and laboratory results including 
complete blood count, albumin, C-reactive protein, 
lactate dehydrogenase (LDH), and creatinine levels 
were measured at V0. Comorbidities were considered 
if they were diagnosed 5 years before and after sur-
gery. Recurrence was defined based on radiological or 
histologic evidence of cancer 6 months after surgery. 
The details of the variables are shown in Table 1. To 
represent postoperative lung function, predicted FEV1 
(%) measured at V1 was defined as an outcome. The 
performance of the linear regression model and ma-
chine learning models in predicting the outcome was 
evaluated.

3. Statistical analyses
We developed three different sets for the linear regres-
sion and machine learning models according to the 
method used to handle missing data. In set I, simple 
linear regression was performed to evaluate the indi-
vidual effects of the variables on predicting postoper-
ative lung function. All variables with a p-value of less 
than 0.07 in the simple linear regression analysis were 
included in the multiple linear regression analysis. The 
imputation of missing data and splitting were not imple-
mented in set I. The dataset was split into training and 

test datasets at a 70:30 ratio for the machine learning 
model. In set II, patients who did not have data for all 
of the selected variables were excluded, meaning that 
a patient with only one variable missing was excluded. 
In set III, we implemented missing value imputation 
rules using only the training dataset. Imputation was 
implemented with linear regression analysis of the con-
tinuous variables and logistic regression analysis of the 
categorical variables using the simpleimputer function 
in the Python package Autoimpute. These imputation 
rules were applied to the test dataset. A total of 1,487 
patients were in sets I and III and 896 patients were 
in set II. Since scaling the data showed poorer perfor-
mance than using the raw data, raw data were used in 
all sets. The study flow diagram is presented in Figure 1.

In sets II and III, we implemented six machine learn-
ing models, least absolute shrinkage and selection op-
erator (LASSO), ridge regression, ElasticNet, Random 
Forest, eXtreme gradient boosting (XGBoost), and the 
light gradient boosting machine (LightGBM) to predict 
6-month postoperative lung function in the developed 
dataset. Five-fold cross-validation was performed for 
hyperparameter tuning of the machine learning mod-
els. After hyperparameter optimization, we used the 
following parameters in each model. 

Training dataset
(n=627)

Test dataset
(n=269)

Training dataset
(imputing on the
training set only)

(n=1,041)

Test dataset
(n=446)

Set III (imputing)
Machine learning models

(n=1,487)

Set II (omitting)
Machine learning models

(n=896)

Set I
Linear model

(n=1,487)

Patients analyzed
(n=1,487)

Patients screened
(n=4,342)

Excluded (n=2,855)
- Postoperative FEV missing (n=2,510)

- Preoperative FEV missing (n=345)
1

1

Figure 1. Flow chart. Six machine learning models were implemented in sets II and III, least absolute shrinkage and se-
lection operator (LASSO), Ridge regression, ElasticNet, Random Forest, eXtreme gradient boosting (XGBoost), and light 
gradient boosting machine (LightGBM). Missing data were omitted in set II and implemented in set III. The training data-
set and test dataset were split at a 70:30 ratio. Implementation was done after data splitting in set III. FEV1: forced expira-
tory volume in 1 second.
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Table 1. Demographics of patients with primary lung 
cancer who received surgery with mediastinal lymph 
node dissection and did not relapse for up to 6 months 
after surgery (1997–2019)

Variable Value

Sex 1,487

   Female 491 (33.0)

   Male 996 (67.0)

Age 1,487

   Mean±SD, yr 66.8±9.1

BMI 1,485

   Mean±SD, kg/m2 24.3±5.7

Smoking 1,415

   Never 903 (63.8)

   Ever 512 (36.2)

Operation 1,487

   Limited resection 152 (10.2)

   Lobectomy 1,200 (80.7)

   Others 135 (9.1)

Staging 1,483

   1 914 (61.6)

   2 292 (19.7)

   3 271 (18.3)

   4 6 (0.4)

Pathology 1,484

   SCLC 26 (1.8)

   NSCLC 1,458 (98.2)

Pathology type 1,484

   Adenocarcinoma 959 (64.6)

   Squamous cell carcinoma 423 (28.5)

   Adenosquamous carcinoma 21 (1.4)

   LCC, LCNEC 25 (1.7)

   SCLC 26 (1.8)

   Others 30 (2.0)

Location 1,485

   RUL 469 (31.6)

   RML 92 (6.2)

   RLL 328 (22.1)

   LUL 340 (22.9)

   LLL 256 (17.2)

Hypertension 1,493

   No 977 (65.7)

   Yes 510 (34.3)

Diabetes 1,487

   No 1,040 (69.9)

   Yes 447 (30.1)

Table 1. Continued

Variable Value

Heart failure 1,487

   No 1,393 (93.7)

   Yes 94 (6.3)

IHD 1,487

   No 1,239 (83.3)

   Yes 248 (16.7)

Cerebral infarction 1,487

   No 1,468 (98.7)

   Yes 19 (1.3)

CKD 1,487

   No 1,431 (96.2)

   Yes 56 (3.8)

Solid cancer 1,487

   No 1,351 (90.9)

   Yes 136 (9.1)

Hematologic cancer 1,487

   No 1,468 (84.5)

   Yes 246 (16.5)

WBC 1,487

   Mean±SD, 103/μL 14.7±5.3

Eosinophil 1,487

   Mean±SD, % 0.5±1.2

Neutrophil 1,486

   Mean±SD, % 82.6±9.3

Lymphocyte 1,486

   Mean±SD, % 11.3±7.7

Platelet 1,487

   Mean±SD, 103/μL 228.8±71.8

Albumin 1,415

   Mean±SD, g/dL 3.6±0.5

CRP 1,396

   Mean±SD, mg/dL 2.4±8.8

LDH 1,155

   Mean±SD, U/L 384.2±138.1

Creatinine 1,485

   Mean±SD, mg/dL 0.80±0.39

Inhaler V0 1,487

   No 1,241 (83.5)

   Yes 246 (16.5)

BD V0 1,487

   No 1,311 (88.2)

   Yes 176 (11.8)
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Table 1. Continued

Variable Value

Palliative chemotherapy 1,487

   No 1,306 (87.8)

   Yes 181 (12.2)

Neoadjuvant radiotherapy 1,487

   No 1,453 (97.7)

   Yes 34 (2.3)

Adjuvant radiotherapy 1,487

   No 1,218 (81.9)

   Yes 269 (18.1)

Palliative radiotherapy 1,487

   No 1,277 (85.9)

   Yes 210 (14.1)

FVC V0 1,478

   Mean±SD, % 93.3±25.4

FEV1 V0 1,476

   Mean±SD, % 98.8±209.0

FEV1/FVC V0 1,476

   Mean±SD, % 71.2±10.1

DLCO V0 1,402

   Mean±SD, % 86.9±26.3

RV/TLC V0 1,357

   Mean±SD, % 38.3±16.9

DFS event 1,487

   No 974 (65.5)

   Yes 513 (34.5)

DFS duration 1,487

   Mean±SD, day 1,026.1±843.2

OS event 1,487

   No 1,185 (79.7)

   Yes 302 (20.3)

OS duration 1,487

   Mean±SD, day 1,187.2±949.9

Values are presented as frequency (%) or mean±standard 
deviation.
SD: standard deviation; BMI: body mass index; SCLC: small 
cell lung cancer; NSCLC: non-small cell lung cancer; LCC: 
large cell carcinoma; LCNEC: large cell neuroendocrine car-
cinoma; RUL: right upper lobe; RML: right middle lobe; RLL: 
right lower lobe; LUL: left upper lobe; LLL: left lower lobe; 
IHD: ischemic heart disease; CKD: chronic kidney disease; 
WBC: white blood cell; CRP: C-reactive protein; LDH: lactate 
dehydrogenase; V0: time interval from 3 months before sur-
gery to the surgery date; BD: bronchodilator; ICS: inhaled 
corticosteroid; V1: time interval from 3 to 9 months after the 
surgery date; FVC: forced vital capacity; FEV1: forced expira-
tory volume in 1 second; DLCO: diffusing capacity of the lung 
for carbon monoxide; RV: residual volume; TLC: total capac-
ity; DFS: disease-free survival; OS: overall survival. 

Table 1. Continued

Variable Value

ICS V0 1,487

   No 1,417 (95.3)

   Yes 70 (4.7)

Doxofylline V0 1,487

   No 1,408 (94.7)

   Yes 79 (5.3)

Roflumilast V0 1,487

   No 1,486 (99.9)

   Yes 1 (0.1)

Theophylline V0 1,487

   No 1,475 (99.2)

   Yes 12 (0.8)

Steroid V0 1,487

   No 1,155 (77.7)

   Yes 332 (22.3)

Inhaler V1 1,487

   No 1,075 (72.3)

   Yes 412 (27.7)

BD V1 1,487

   No 1,224 (82.3)

   Yes 263 (17.7)

ICS V1 1,487

   No 1,338 (90.0)

   Yes 149 (10.0)

Doxofylline V1 1,487

   No 1,080 (72.6)

   Yes 407 (27.4)

Roflumilast V1 1,487

   No 1,485 (99.9)

   Yes 2 (0.1)

Theophylline V1 1,487

   No 1,458 (98.1)

   Yes 29 (1.9)

Steroid V1 1,487

   No 393 (26.4)

   Yes 1,094 (73.6)

Neoadjuvant chemotherapy 1,487

   No 1,335 (89.8)

   Yes 152 (10.2)

Adjuvant chemotherapy 1,487

   No 970 (65.2)

   Yes 517 (34.8)
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Mean squared error (MSE) and R2 were used in the 
test dataset to assess the predictive quality of the mod-
els. Data analyses were performed using R version 4.0.2 
(The R Foundation, Vienna, Austria) and Python 3.7 (Py-
thon Software Foundation, Wilmington, DE, USA). The 
specific Python package used was Autoimpute. 

4. Ethics approval 
This study was reviewed and approved by the Institu-
tional Review Board (IRB) of the Eunpyeong St. Mary’s 
Hospital, College of Medicine, The Catholic University 
of Korea (IRB approval number: XC20WIDI0027P). Writ-
ten informed consent by the patients was waived due 
to the retrospective nature of our study.

Table 2. Continued

Variable ββ±SE p-value

COPD treatments

   Inhaler V0 –10.15±1.34 <0.001

   BD V0 –7.18±1.56 <0.001

   ICS V0 –14.53±2.36 <0.001

   Doxofylline V0 –9.40±2.25 <0.001

   Roflumilast V0 –24.04±19.55 0.219

   Theophylline V0 –16.74±5.65 0.003

Cancer treatments

   Neoadjuvant 
      chemotherapy

–12.18±3.38 <0.001

   Adjuvant chemotherapy –5.22±1.06 <0.001

   Neoadjuvant 
      radiotherapy

–12.81±3.38 <0.001

   Adjuvant radiotherapy –7.04±1.30 <0.001

PFT

   preFVC V0, % 0.26±0.02 <0.001

   preFEV1 V0, % 0.01±0.00 0.002

   preFEV1/FVC V0, % 0.71±0.05 <0.001

   DLC0 V0, % 0.12±0.02 <0.001

   RV/TLC V0, % –0.05±0.03 0.139

β: point estimation; SE: standard error; BMI: body mass 
index; SCLC: small cell lung cancer; NSCLC: non-small cell 
lung cancer; RUL: right upper lobe; RML: right middle lobe; 
RLL: right lower lobe; LUL: left upper lobe; LLL: left lower 
lobe; WBC: white blood cell; CRP: C-reactive protein; LDH: 
lactate dehydrogenase; COPD: chronic obstructive pulmo-
nary disease; V0: time interval from 3 months before sur-
gery to the surgery date; BD: bronchodilator; ICS: inhaled 
corticosteroid; PFT: pulmonary function test; FVC: forced 
vital capacity; FEV1: forced expiratory volume in 1 second; 
DLCO: diffusing capacity of the lung for carbon monoxide; 
RV: residual volume; TLC: total capacity.

Table 2. Simple linear regression results

Variable ββ±SE p-value

Sex 

   Female Reference

   Male –11.16±1.04 <0.001

Age, yr 0.29±0.06 <0.001

BMI, kg/m2 –0.11±0.09 0.211

Smoking

   Never Reference

   Ever –7.83±1.06 <0.001

Operation

   Limited resection Reference

   Lobectomy –9.33±1.61 <0.001

   Others –4.98±1.03 <0.001

Staging 

   1, 2 Reference

   3, 4 –4.03±1.03 0.002

Pathology

   SCLC Reference

   NSCLC 7.04±3.87 0.002

Location 

   RML Reference

   RUL –3.43±2.23 0.123

   RLL –5.05±2.30 0.029

   LUL –5.20±2.30 0.024

   LLL –3.27±2.37 0.169

Labortary results

   WBC, 103/μL –0.11±0.10 0.251

   Eosinphil, % –0.60±0.41 0.148

   Neutrophil, % 0.03±0.05 0.624

   Lymphocyte, % 0.08±0.07 0.199

   Platelet, 103/μL –0.01±0.01 0.124

   Albumin, g/dL 5.23±1.13 <0.001

   CRP, mg/dL –0.11±0.06 0.066

   LDH, U/L –0.02±0.00 <0.001

   Creatinine, mg/dL –6.19±1.30 <0.001

Comorbidites

   Hypertension –2.19±1.07 0.040

   Diabetes –3.28±1.10 0.003

   Heart failure –8.64±2.07 <0.001

   Ischemic heart disease –2.05±1.36 0.132

   Cerebral infarction 1.85±4.51 0.683

   Chronic kidney disease 0.20±2.66 0.940

   Solid cancer 1.47±1.76 0.403

   Hematologic cancer 5.74±4.51 0.204
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Results

1. Overall patient characteristics 
A total of 1,487 patients with primary lung cancer who 
received surgery with mediastinal lymph node dis-
section and did not relapse for up to 6 months after 
surgery were included. The patient characteristics are 
presented in Table 1. 

2. Linear regression model 
The results of the single linear regression model are 
provided in Table 2. Variables with a p-value of less 
than 0.07 were entered into the multiple linear regres-
sion model as presented in Table 3. The male gender 
was negatively correlated with FEV1 V1 compared to 
the female gender, and regarding the type of surgery, 
lobectomy and other methods were negatively correlat-
ed compared to sublobar resection. LDH levels and 
inhaler V0 were negatively correlated and FVC V0 was 

positively correlated.

3. Predictive performance 
The scatter plots of actual postoperative FEV1 (%) and 
the predicted postoperative FEV1 (%) of prediction 
models in sets II and III are presented in Figures 2, 3. 
The residual box plots of prediction models in sets II 
and III are presented in Figures 4, 5. Residuals were 
calculated by the formula: residual=predicted postoper-
ative FEV1 (%)–actual postoperative FEV1 (%). Linear re-
gression coefficients were estimated by ordinary least 
squares regression. The range between the maximum 
residual and minimum residual and the box was nar-
rowest in the LightGBM model in both sets. The pre-
dictive performance evaluated by MSE and R2 for each 
classifier in sets II and III was computed based on the 
test dataset and is described in Table 4. In set I, the R2 
value was 0.27 with p<0.001. In set II, the best classifier 
for predicting 6-month postoperative lung function was 

Table 3. Multiple linear regression, R2=0.27 for the model, p<0.001

Variable ββ±SE p-value Normalized GVIF

Intercept 51.30±4.95 <0.001

Age, yr 0.30±0.06 <0.001 1.030

Sex 1.032

   Female Reference

   Male –9.21±1.08 <0.001

Operation 1.030

   Sublobar resection Reference

   Lobectomy –6.44±1.63 <0.001

   Other –4.11±1.03 <0.001

Location 1.010

   RML Reference

   RUL –2.85± 2.16 0.187

   RLL –3.97±2.21 0.073

   LUL –5.97±2.23 0.008

   LLL –2.51±2.32 0.279

LDH, U/L –0.02±0.00 <0.001 1.032

Heart failure –5.22±2.03 0.010 1.018

Inhaler V0 –5.16±1.33 <0.001 1.015

Theophylline V0 –16.71±5.43 0.002 1.005

FVC V0, % 0.17±0.02 <0.001 1.015

FEV1 V0, % 0.00±0.00 0.016 1.004

DLCO V0, % 0.06±0.02 0.001 1.029

GVIF: generalized variation inflation factor; RML: right middle lobe; RUL: right upper lobe; RLL: right lower lobe; LUL: left upper lobe; 
LLL: left lower lobe; LDH: lactate dehydrogenase; V0: time interval from 3 months before surgery to the surgery date; FVC: forced vital 
capacity; FEV1: forced expiratory volume in 1 second; DLCO: diffusing capacity of the lung for carbon monoxide. 
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LightGBM with an MSE of 154.95 and an R2 value of 
0.5. In set III, the best classifier was LightGBM with an 
MSE of 174.07 and an R2 value of 0.56. Since LightGBM 
in set III (imputing missing data) had the highest ex-

planatory power with the highest R2 value of 0.56 and 
the lowest MSE, it was the best model for predicting 
6-month postoperative lung function. 
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Figure 2. Scatter plot of the actual postoperative forced expiratory volume in 1 second (FEV1, %) and predicted FEV1 
(%) pairwise of the models in set II. (A) Ordinary least squares (OLS), (B) least absolute shrinkage and selection opera-
tor (LASSO), (C) Ridge regression, (D) ElasticNet, (E) Random Forest, (F) eXtreme gradient boosting (XGBoost), (G) 
light gradient boosting machine (LightGBM), and (H) predicted postoperative forced expiratory volume in 1 second 
(ppoFEV1)=preFEV1×[1–(number of segments×0.0526)]. 
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Figure 3. Scatter plot of the actual postoperative forced expiratory volume in 1 second (FEV1) and predicted FEV1 
pairwise of the models in set III. (A) Ordinary least squares (OLS), (B) least absolute shrinkage and selection opera-
tor (LASSO), (C) Ridge regression, (D) ElasticNet, (E) Random Forest, (F) eXtreme gradient boosting (XGBoost), (G) 
light gradient boosting machine (LightGBM), and (H) predicted postoperative forced expiratory volume in 1 second 
(ppoFEV1)=preFEV1×[1–(number of segments×0.0526)].
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Table 4. MSE and R2 values of the linear regression model, machine learning models, and ppoFEV1

Datasets Evaluation OLS LASSO Ridge 
regression ElasticNet Random 

Forest XGBoost LighGBM ppoFEV1

Set II MSE 212.94 196.44 192.47 196.44 158.44 203.18 154.95 195.11

R2 0.313 0.366 0.366 0.366 0.489 0.345 0.508 0.371

Set III MSE 227.77 193.48 186.29 191.56 192.2 198.17 174.07 250.06

R2 0.424 0.511 0.529 0.516 0.514 0.499 0.561 0.368

MSE: mean squared error; ppoFEV1: predicted postoperative forced expiratory volume in 1 second (%) calculated by the formula: 
ppoFEV1=preFEV1×[1–(number of segments×0.0526)]; OLS: ordinary least squares; LASSO: least absolute shrinkage and selection 
operator; XGBoost: extreme gradient boosting; LightGBM: light gradient boosting machine; Set II: omitting missing datasets; Set III: 
imputing missing datasets. 
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Figure 6. Mean squared error (MSE) and R2 of the machine learning models. (A, B) Set II, III Random Forest, (C, D) set II, 
III eXtreme gradient boosting (XGBoost), (E, F) set II, III light gradient boosting machine (LightGBM). FEV1: forced expira-
tory volume in 1 second; V0: time interval from 3 months before surgery to the surgery date; FVC: forced vital capacity; 
LDH: lactate dehydrogenase; RV: residual volume; TLC: total capacity; CRP: C-reactive protein; DLCO: diffusing capacity of 
the lung for carbon monoxide; BMI: body mass index; CTx: chemotherapy; BD: bronchodilator; RTx: radiotherapy; WBC: 
white blood cell; ICS: inhaled corticosteroid; RML: right middle lobe; LUL: left upper lobe; HF: heart failure; CV: cardiovas-
cular disease; SCLC: small cell lung cancer; TPL: theophylline; RUL: right upper lobe.



Predicting lung function after lung cancer surgery

https://e-trd.org/Tuberc Respir Dis 2023;86:203-215 213

4. Importance scores 
The importance scores (β coefficients) for the variables 
in Random Forest, XGBoost, and LightGBM are pre-
sented in Figure 6. In Figure 6A, C, E missing data were 
omitted and in Figure 6B, D, F missing data were im-
puted. The variable with the highest importance score 
was preFEV1 V0 in the Random Forest model and the 
LightGBM model. In the Random Forest model with set 
III, preFVC V0 was the variable with the second-highest 
importance score (0.163). In the XGBoost model, inhal-
er V0 had the largest absolute value of the coefficient 
in set II and adjuvant radiotherapy had the largest value 
in set III. In LightGBM, age was the second-highest 
variable and RV/TLC V0 was the third-highest variable.

Discussion

In this study, we found that machine learning models 
outperformed the traditional linear model and the pre-
vious prediction method using the number of resected 
lung segments in predicting postoperative lung func-
tion. Moreover, in all machine learning models, imput-
ing the missing data showed performance superior 
to omitting the missing data, as presented in Table 4. 
Overall, the LightGBM model had the highest explan-
atory power with an R2 value of 0.561 and the lowest 
MSE of 174.07. It outperformed the previous method of 
predicting postoperative lung function using the num-
ber of lung segments resected in set III which had R2 
value of 0.368 and MSE of 250.06 as shown in Table 4. 
Moreover, as presented in Figure 5, the previous meth-
od had large negative residuals and a relatively longer 
whiskers than the LightGBM model. Since the linear re-
gression model showed a relatively low R2 at only 0.27, 
the results of this study might suggest that machine 
learning models could improve predictive accuracy giv-
en the same data. 

In multiple linear regression analysis, the variables 
with statistical significance were sex, type of surgery, 
LDH level, inhaler V0, and FVC V0, as presented in 
Table 3. In regard to the type of surgery, as the range 
of surgery types increased, the postoperative lung 
function decreased. Compared to sublobar resection, 
lobectomy had a parameter estimate of –6.44. This 
was consistent with previous studies that showed lim-
ited resection such as sublobar resection preserved 
postoperative lung function18,19. In another previous 
study, the ppoFEV1 was calculated using the formula: 
ppoFEV1=preFEV1×[1–(S×0.0526)]; where S is the num-
ber of segments resected13. This formula correlated 
well when patients underwent lobectomy. However, in 
patients who underwent pneumonectomy, the actual 

postoperative FEV1 was an average of 250 mL higher 
than ppoFEV1. This indicates that an adjustment factor 
is required to increase the accuracy of predicting post-
operative lung function. To achieve this, we considered 
a variety of factors as independent variables to serve as 
an adjustment factor and pre-bronchodilator postoper-
ative FEV1 V1 as a dependent variable.

In the machine learning models, the variables with 
the highest importance scores varied in each model. In 
the ridge regression model, preFVC V0 was the highest 
variable followed by preFEV1 V0 and age variables. In 
the LightGBM model, preFEV1V0 was the highest vari-
able followed by age and RV/TLC V0. In the XGBoost 
model of set III, adjuvant radiotherapy was the high-
est variable followed by neoadjuvant chemotherapy. 
Since COPD and lung cancer are known to be linked 
diseases20, COPD is highly prevalent in patients with 
lung cancer. COPD has a characteristic of hyperinflated 
lungs, resulting in an increase in the RV/TLC ratio. The 
all-cause mortality was higher in COPD patients who 
had higher RV/TLC values21. Because surgery reduces 
this hyperinflation, patients who underwent surgery 
exhibited better preservation of FEV1

22. In our previous 
study, lung cancer patients with COPD had higher RV/
TLC values than lung cancer patients without COPD. 
Lung cancer patients with COPD had preserved post-
operative lung functions compared to patients without 
COPD. Therefore, the RV/TLC value was positively cor-
related with postoperative lung function23. We found 
that the RV/TLC value was also influential in predicting 
postoperative lung function with machine learning 
models. 

When handling the missing data, we compared the 
predictive performance of each model in two methods, 
one in which the missing data were omitted, and an-
other in which the missing data with imputed by imple-
menting linear regression analysis for the continuous 
variables and logistic regression for the categorical 
variables. As shown in Table 4, by implementing the 
missing data, the R2 value increased in all models. In 
data analysis, handling missing data is important and 
deleting missing values causes a massive loss of infor-
mation, leading to a decrease in statistical power24-26. 
Therefore, the imputation of missing data should be 
implemented when handling big data. 

This study had several limitations. The CDW had a 
relatively large number of incomplete data and this 
might lead to selection bias. Patients who did not have 
postoperative FEV1 data were excluded. Physicians 
usually measure FEV1 when patients experience symp-
toms such as shortness of breath. Therefore, patients 
without postoperative FEV1 data might have had rel-
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atively preserved FEV1. Imaging studies like CT are 
also known as factors predicting postoperative lung 
function but these data were not available. The inclu-
sion of laboratory data and other variables might have 
been irrelevant, and these data might have impaired 
the explanatory power. Future studies are required to 
enhance the explanatory power by increasing the sam-
ple size, including appropriate variables, and excluding 
irrelevant variables. 

In predicting postoperative lung function for lung 
cancer patients, machine learning models performed 
modestly better than the linear regression model. 
The highest explanatory power was achieved by the 
LightGBM model by imputing the missing data. The 
preoperative FEV1 and RV/TLC values had a large im-
pact on postoperative lung function. These findings 
suggest that machine learning models can be used as 
a predictive tool. Future studies are needed to improve 
the predictive performance. 
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