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⋆-CONFORMAL RICCI SOLITONS ON

ALMOST COKÄHLER MANIFOLDS

Tarak Mandal and Avijit Sarkar

Abstract. The main intention of the current paper is to characterize

certain properties of ⋆-conformal Ricci solitons on non-coKähler (κ, µ)-
almost coKähler manifolds. At first, we find that there does not exist

⋆-conformal Ricci soliton if the potential vector field is the Reeb vector
field θ. We also prove that the non-coKähler (κ, µ)-almost coKähler man-

ifolds admit ⋆-conformal Ricci solitons if the potential vector field is the

infinitesimal contact transformation. It is also studied that there does
not exist ⋆-conformal gradient Ricci solitons on the said manifolds. An

example has been constructed to verify the obtained results.

1. Introduction

The famous theory of Ricci flow was coined by R. S. Hamilton [16] in order
to solve the well-known Poincare conjecture. A Ricci flow is described by the
following pseudo-parabolic partial differential equations:

∂g

∂t
= −2Sij ,

gij(t0) = g.

A fixed point of the above system is called a Ricci soliton which is given by

LVg + 2S = 2λg,

L being the Lie-derivative operator and λ is a constant. A Ricci soliton is called
expanding or steady or shrinking if λ is negative or zero or positive, respectively.
A Ricci soliton is called an almost Ricci soliton when λ is a smooth function.
The notion of almost Ricci soliton was introduced by Pigola et al. [20]. The
theory of Ricci soliton in the context of contact geometry was first studied
by R. Sharma [25]. To study about Ricci solitons, reader can see the papers
[3, 13,18,19,24,26,29–31].
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In 2005, A. E. Fischer [14] presented the idea of conformal Ricci flow on
Riemannian manifolds by the following partial differential equation:

(1)
∂g

∂t
+ 2(S +

g

m
) = −qg

and r = −1, where r, S, g, q(≥ 0) and m are, respectively, scalar curvature,
Ricci tensor of type (0, 2), Riemannian metric, time-dependent non-dynamical
scalar field, and dimension of the manifold. A conformal Ricci flow is a type of
classical Ricci flow that modifies the unit volume constraint of the equation to
the scalar curvature constraint. The name conformal is used here for the role
of conformal geometry in constructing the scalar curvature constraint.

Let ḡij be a metric which evolves under conformal Ricci flow. Hence we can
write

(2) ḡij = σ(t)ϕ∗t gij ,

where σ being a scaling function and ϕ∗t is the 1-parameter group of transfor-
mation induced by the flow. Let at t = t0, σ(t) = 1 and ϕ∗t be an identity
transformation. Using (2) in (1), we get

σ′(t)ϕ∗t gij + σ(t)
d

dt
(ϕ∗t gij) = −2Sij − (q +

2

m
)σ(t)ϕ∗t gij .

Putting t = t0 and taking σ′(t0) = −2λ, we get from the above equation

(3) LVgij + 2Sij = [2λ− (q +
2

m
)]gij ,

where V is the vector field induced by the 1-parameter group of transformation
ϕ∗t and LV denotes the Lie-derivative operator along the potential vector field
(shortly, PVF) V. In co-ordinate free notation the above equation is

(4) LVg + 2S = [2λ− (q +
2

m
)]g.

The concept of conformal Ricci solitons was presented in 2015 and studied by
N. Basu and A. Bhattacharyya [2] which are the self-similar solution of the
conformal Ricci flow equation (1). In [11–13], authors have derived so many
characteristics of conformal Ricci solitons on different types of contact and
para-contact manifolds. A conformal Ricci soliton is expanding or steady or
shrinking according as λ is negative or zero or positive. Conformal Ricci solitons
are special type of almost Ricci solitons. Here the unit volume constraint is
replaced by scalar curvature constraint.

In [27], Tachibana defined ⋆-Ricci tensor in almost Kählerian manifolds. The
⋆-Ricci tensor S⋆ is defined by

S⋆(V1, V2) =
1

2
trace{V3 → R(V1, ϕV2)ϕV3}

for every vector fields V1, V2 and V3 on the manifold. ⋆-Ricci tensor on several
sorts of manifolds has been researched in articles [7, 15,18,22,23].
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On contact or para-contact manifolds, ⋆-conformal Ricci solitons are de-
fined by replacing the Ricci tensor with the ⋆-Ricci tensor in (4). Thus the
⋆-conformal Ricci soliton is given by

(5) LVg + 2S⋆ = [2λ− (q +
2

m
)]g,

where the symbols in the above equation bear their usual meaning. ⋆-conformal
Ricci solitons have been studied in the papers [10,17,21].

A ⋆-conformal Ricci soliton is named as a ⋆-conformal gradient Ricci soliton
if the PVF V is the gradient of some smooth function ψ on the manifold M.
Thus, the ⋆-conformal gradient Ricci soliton is given by

(6) ∇2ψ + S⋆ = (λ− 1

2
(q +

2

m
))g,

where ∇2ψ is the Hessian of ψ.
The paper is organized as follows: After the introduction, we relate (κ, µ)-

almost coKähler manifolds and give some essential formulas in Section 2. In
Section 3, we deduce some characteristics of ⋆-conformal Ricci solitons on (κ, µ)-
almost coKähler manifolds. Section 4 is devoted to study ⋆-conformal gradient
Ricci solitons on the said manifolds. In the last part, we provide an example
to validate our generated results.

2. (κ, µ)-almost coKähler manifolds

Let M be a (2m+1)-dimensional smooth manifold endowed with an almost
contact metric structure (ϕ, θ, ϱ, g), where ϕ is a (1, 1)-tensor field, θ is a vector
field, ϱ is a 1-form and g is the Riemannian metric on M such that [5, 9]

(7) ϕ2(V1) = −V1 + ϱ(V1)θ, ϱ(θ) = 1.

As a consequence, we get the following:

ϕθ = 0, g(V1, θ) = ϱ(V1), ϱ(ϕV1) = 0,

g(ϕV1, ϕV2) = g(V1, V2)− ϱ(V1)ϱ(V2),

g(ϕV1, V2) = −g(V1, ϕV2),
for every vector fields V1, V2 ∈ χ(M), the set of all vector fields on M. An
almost contact metric manifold (shortly, ACMM) is a differentiable manifold
M of dimension (2m+1) with an almost contact metric structure. The 2-form
Φ on ACMMs is defined by

Φ(V1, V2) = g(V1, ϕV2)

for every V1, V2 ∈ χ(M). An almost contact metric manifold is also known as
an almost coKähler manifold (shortly, ACM) if both ϱ and Φ are closed, that
is, dΦ = 0 and dϱ = 0. According to Blair [4], an (almost) coKähler manifold
and an (almost) cosymplectic manifold are same.

Let M be an ACM of dimension (2m + 1). Assume the two operators h
and l which are defined by h = 1

2Lθϕ and l = R(·, θ)θ, where R denotes the
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curvature tensor and L is the Lie differentiation operator. These operators
satisfy the following [9]:

hθ = 0, tr(h) = 0, tr(hϕ) = 0, hϕ = −ϕh,

(8) ∇V1
θ = hϕV1,

ϕlϕ− l = 2h2,

for every vector field V1, and ‘tr’ stands for trace. In an ACM, the 1-form ϱ
is closed, that is

(∇V1
ϱ)V2 − (∇V2

ϱ)V1 = 0

for every vector fields V1, V2 ∈ χ(M).
The almost coKähler structure is integrable if and only if

(9) (∇V1
ϕ)V2 = g(hV1, V2)θ − ϱ(V2)hV1

for any vector fields V1, V2 ∈ χ(M).
Blair et al. [6] established the concept of (κ, µ)-nullity distribution on contact

metric manifolds. A contact metric manifold M of dimension (2m+ 1) whose
curvature tensor satisfies

R(V1, V2)θ = κ[ϱ(V2)V1 − ϱ(V1)V2] + µ[ϱ(V2)hV1 − ϱ(V1)hV2]

for every vector fields V1, V2 on M, and κ, µ ∈ R is known as (κ, µ)-contact
metric manifold and it is said that θ belongs to the (κ, µ)-nullity distribution.
When κ, µ are smooth functions, the manifold is called a generalized (κ, µ)-
contact metric manifold.

An ACM M of dimension (2m+1) is said to be a (κ, µ)-ACM if θ satisfies
the equation

(10) R(V1, V2)θ = κ[ϱ(V2)V1 − ϱ(V1)V2] + µ[ϱ(V2)hV1 − ϱ(V1)hV2]

for every vector fields V1, V2 on M and κ, µ are real numbers.
A (κ, µ)-ACM of dimension (2m+1) satisfies the following curvature prop-

erties [9]:

h2V1 = κϕ2V1,(11)

S(V1, θ) = 2mκϱ(V1),

Qθ = 2mκθ

for every vector field V1 ∈ χ(M), S being the Ricci tensor of type (0,2) and Q
being Ricci operator. From the equation (11), we can easily derive that κ ≤ 0
and the manifold is coKähler if and only if κ = 0.

Lemma 2.1 ([1]). In a non-coKähler (κ, µ)-ACM of dimension (2m+1), the
following relations hold

(12) QV1 = µhV1 + 2mκϱ(V1)θ,

(13)
(∇V1h)V2 − (∇V2h)V1 = κ[ϱ(V2)ϕV1 − ϱ(V1)ϕV2 + 2g(ϕV1, V2)θ]

+ µ[ϱ(V2)ϕhV1 − ϱ(V1)ϕhV2],
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(14)
(∇V1hϕ)V2 − (∇V2hϕ)V1 = κ(ϱ(V2)V1 − ϱ(V1)V2)

+ µ(ϱ(V2)hV1 − ϱ(V1)hV2)

for every vector fields V1, V2 ∈ χ(M).

Lemma 2.2 ([8]). The ⋆-Ricci tensor and ⋆-scalar curvature on a (2m + 1)-
dimensional (κ, µ)-ACM M are, respectively, given by

(15) S⋆(V2, V3) = −κ(g(V2, V3)− ϱ(V2)ϱ(V3)),

(16) r⋆ = −2mκ

for every vector fields V2, V3 on M.

According to Blair ([5, p. 72]) and Tanno [28], we give the following defini-
tion.

Definition. A vector field V on an ACMM M is called an infinitesimal
contact transformation if it satisfies

LVϱ = fϱ

for some smooth function f on M. If f = 0, then the vector field V is called a
strict infinitesimal contact transformation.

3. ⋆-conformal Ricci solitons on (κ, µ)-almost coKähler manifolds

In the present section, we study ⋆-conformal Ricci solitons on non-coKähler
(κ, µ)-ACMs.

Let M be a non-coKähler (κ, µ)-ACM of dimension (2m+1) which admits
⋆-conformal Ricci soliton. Assume the PVF V is pointwise collinear with θ,
that is, V = ρθ, where ρ is a smooth function on the manifold. Then, from (5),
we have

(17)

ρg(∇V1θ, V2) + (V1ρ)ϱ(V2) + ρg(∇V2θ, V1) + (V2ρ)ϱ(V1) + 2S⋆(V1, V2)

= (2λ− (q +
2

2m+ 1
))g(V1, V2).

Using (8), (15) and (16) in (17), we infer

(18)

2ρg(hϕV1, V2) + (V1ρ)ϱ(V2) + (V2ρ)ϱ(V1)

= (2λ+ 2κ− (q +
2

2m+ 1
))g(V1, V2)− 2κϱ(V1)ϱ(V2).

Putting V2 = θ in (18), we have

(19) (V1ρ) + (θρ)ϱ(V1) = (2λ− (q +
2

2m+ 1
))ϱ(V1).

Again, putting V1 = θ in (19), we get

(20) (θρ) =
1

2
(2λ− (q +

2

2m+ 1
)).
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Let {e1, e2, . . . , e2m+1} be an orthonormal ϕ-basis, with e2m+1 = θ, of the
tangent space at each point of the manifold. Contracting V1 and V2 of (18)
with respect to the above basis, we get

(21) (θρ) = (λ+ κ− (
q

2
+

1

2m+ 1
))(2m+ 1)− κ.

Comparing (20) and (21), we infer

λ =
q

2
+

1

2m+ 1
− κ.

As a result, we may establish the following theorem.

Theorem 3.1. If the metric of a non-coKähler (κ, µ)-ACM admits ⋆-conform-
al Ricci soliton with PVF is pointwise collinear with the Reeb vector field θ,
then λ = q

2 + 1
2m+1 − κ.

Using (20) in (19), we obtain

(22) (V1ρ) =
1

2
(2λ− (q +

2

2m+ 1
))ϱ(V1).

Applying (22) in (18), we obtain

(23) ρg(hϕV1, V2) = (λ+ κ− (
q

2
+

1

2m+ 1
))(g(V1, V2)− ϱ(V1)ϱ(V2)).

Replacing V1 by ϕV1 in (23), we get

ρg(hV1, V2) = −(λ+ κ− (
q

2
+

1

2m+ 1
))g(ϕV1, V2).

Again, replacing V1 by hV1 in the above equation, we obtain

(24) g(hϕV1, V2) = − ρκ

(λ+ κ− ( q2 + 1
2m+1 ))

(g(V1, V2)− ϱ(V1)ϱ(V2)).

Using(24) in (23), we get( ρ2κ

(λ+κ−( q2+
1

2m+1 ))
+(λ+κ−(

q

2
+

1

2m+1
))
)
(g(V1, V2)−ϱ(V1)ϱ(V2)) = 0,

which is true for any vector fields V1, V2. Thus, from above, we get

ρ2 = −
(λ+ κ− ( q2 + 1

2m+1 ))
2

κ
,

which implies that ρ is a constant. Thus we can state the following.

Theorem 3.2. If a non-coKähler (κ, µ)-ACM admits ⋆-conformal Ricci soli-
ton and the PVF V is pointwise collinear with the Reeb vector field θ, then V
is a constant multiple of θ.
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If the PVF is the Reeb vector field θ, then from (18), we can write

g(hϕV1, V2) = (λ+ κ− (
q

2
+

1

2m+ 1
))(g(V1, V2)− κϱ(V1)ϱ(V2)),

which implies

(25) hϕV1 = (λ+ κ− (
q

2
+

1

2m+ 1
))V1 − κϱ(V1)θ.

Operating both sides of (25) by ϕ and using (7), we obtain

(26) hV1 = (λ+ κ− (
q

2
+

1

2m+ 1
))ϕV1.

Again, operating both sides of (26) by h and using (11), we get

(27) κϕ2V1 = (λ+ κ− (
q

2
+

1

2m+ 1
))hϕV1.

Tracing the above equation, and using trϕ2 = −2m and tr(hϕ) = 0, we infer
that κ = 0, which is a contradiction.

As a result, we may establish the following theorem.

Theorem 3.3. There does not exist ⋆-conformal Ricci soliton on a (2m+ 1)-
dimensional non-coKähler (κ, µ)-ACM if the PVF is the Reeb vector field
θ.

Let the metric g of a non-coKähler (κ, µ)-ACM be a ⋆-conformal Ricci
soliton. Then with the help of (5), (15) and (16), we get

(28) (LVg)(V2, V3) = (2λ+ 2κ− (q +
2

2m+ 1
))g(V2, V3)− 2κϱ(V2)ϱ(V3).

Differentiating the equation (28) covariantly with respect to V1, we obtain

(29) (∇V1
LVg)(V2, V3) = −2κ[(∇V1

ϱ)(V2)ϱ(V3) + ϱ(V2)(∇V1
ϱ)(V3)].

From (8), we have

(30) (∇V1ϱ)(V2) = g(hϕV1, V2).

Using (30) in (29), we obtain

(31) (∇V1
LVg)(V2, V3) = −2κ[g(hϕV1, V2)ϱ(V3) + g(hϕV1, V3)ϱ(V2)].

Using formula for commutativity of Lie derivative and covariant derivative (for
details see Yano [32, p. 23]), we have

(LV∇V1
g −∇V1

LVg −∇[V,V1]g)(V2, V3)

= − g((LV∇)(V1, V2), V3)− g((LV∇)(V1, V3), V2).

Because of the parallelism of the metric tensor g, the above equation reduces
to

(∇V1
LVg)(V2, V3) = g((LV∇)(V1, V2), V3) + g((LV∇)(V1, V3), V2).
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From the above equation, we have

(32)
2g((LV∇)(V1, V2), V3) = (∇V1LVg)(V2, V3) + (∇V2LVg)(V3, V1)

− (∇V3LVg)(V1, V2).

Applying (31) in (32), we get

g((LV∇)(V1, V2), V3) = −2κg(hϕV1, V2)ϱ(V3),

from which we obtain

(LV∇)(V1, V2) = −2κg(hϕV1, V2)θ.

Differentiating the above equation covariantly and using (8), we infer

(33) (∇V1
LV∇)(V2, V3) = −2κg((∇V1

hϕ)V2, V3)θ − 2κg(hϕV2, V3)hϕV1.

According to Yano ([32, p. 23]), we get

(34) (LVR)(V1, V2)V3 = (∇V1LV∇)(V2, V3)− (∇V2LV∇)(V1, V3)

for any vector fields V1, V2, V3.
Substituting (33) in (34), we obtain

(LVR)(V1, V2)V3 = − 2κ[g((∇V1
hϕ)V2 − (∇V2

hϕ)V1, V3)θ

+ g(hϕV2, V3)hϕV1 − g(hϕV1, V3)hϕV2].

Using (14) in the above equation, we obtain

(LVR)(V1, V2)V3 = − 2κ[κ(g(V1, V3)ϱ(V2)θ − g(V2, V3)ϱ(V1)θ)

+ µ(g(hV1, V3)ϱ(V2)θ − g(hV2, V3)ϱ(V1)θ)

+ g(hϕV2, V3)hϕV1 − g(hϕV1, V3)hϕV2].

Contracting the above equation over V1, we obtain

(35) (LVS)(V2, V3) = 2κµg(hV2, V3).

From (12), we can write

(36) S(V2, V3) = µg(hV2, V3) + 2mκϱ(V2)ϱ(V3).

Taking Lie derivative of (36) with respect to V and using (28), we obtain

(37)

(LVS)(V2, V3) = µ((2λ+ 2κ− (q +
2

2m+ 1
))g(hV2, V3)

+ g((LVh)V2, V3)) + 2mκ((LVϱ)(V2)ϱ(V3)

+ ϱ(V2)(LVϱ)(V3)).

Now, with the help of (28), we get

(38)

(LVϱ)(V2) = (LVg)(V2, θ) + g(V2,LVθ)

= (2λ− (q +
2

2m+ 1
))ϱ(V2) + g(V2,LVθ).
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Using (38) in (37), we have

(39)

(LVS)(V2, V3)

= µ((2λ+ 2κ− (q +
2

2m+ 1
))g(hV2, V3)

+ g((LVh)V2, V3)) + 2mκ(2(2λ− (q +
2

2m+ 1
))ϱ(V2)ϱ(V3)

+ g(V2,LVθ)ϱ(V3) + g(V3,LVθ)ϱ(V2)).

Comparing (35) and (39), we obtain

µ((2λ+ 2κ− (q +
2

2m+ 1
))g(hV2, V3)

+g((LVh)V2, V3)) + 2mκ(2(2λ+ 2κ− (q +
2

2m+ 1
))ϱ(V2)ϱ(V3)

+g(V2,LVθ)ϱ(V3) + g(V3,LVθ)ϱ(V2)) = 2κµg(hV2, V3).

Let {e1, e2, . . . , en, em+1, em+2, . . . , e2m, e2m+1} be an orthonormal ϕ-basis,
with e2m+1 = θ, of the tangent space at each point of the manifold, where
hei =

√
−κei. Contracting V2 and V3 with respect to the above basis, we get

(40) ϱ(LVθ) = −(2λ− (q +
2

2m+ 1
)).

Again, putting V2 = V3 = θ in (28), we obtain

(41) ϱ(LVθ) = −1

2
(2λ− (q +

2

2m+ 1
)).

Comparing (40) and (41), we have

λ =
q

2
+

1

2m+ 1
.

Thus we can state the following.

Theorem 3.4. If the metric of a non-coKähler (κ, µ)-ACM is a ⋆-conformal
Ricci soliton, then λ = q

2 + 1
2m+1 .

As q ≥ 0, from the above discussion, we may establish the following corollary.

Corollary 3.5. On a non-coKähler (κ, µ)-ACM, a ⋆-conformal Ricci soliton
is shrinking.

Applying V3 = θ in (28), we obtain

(42) (LVg)(V2, θ) = (2λ− (q +
2

2m+ 1
))ϱ(V2).

Again, replacing V2 by θ in the above equation, we get

g(LVθ, θ) = −1

2
(2λ− (q +

2

2m+ 1
)),
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which implies

(43) LVθ = −1

2
(2λ− (q +

2

2m+ 1
))θ.

Taking Lie derivative of ϱ(V2) = g(V2, θ) with respect to V, we have

(44) (LVϱ)(V2) = (LVg)(V2, θ) + g(V2,LVθ).

Using (42) and (43) in (44), we obtain

(LVϱ)(V2) =
1

2
(2λ− (q +

2

2m+ 1
))ϱ(V2),

it follows that V is an infinitesimal contact transformation. As a result, we
may establish the following theorem.

Theorem 3.6. If a non-coKähler (κ, µ)-ACM of dimension 2m+1 admits a
⋆-conformal Ricci soliton, then the PVF is an infinitesimal contact transfor-
mation.

As a consequence of the above theorem, we can state the following corollary

Corollary 3.7. If the PVF of a ⋆-conformal Ricci soliton is a strict infini-
tesimal contact transformation, then λ = q

2 + 1
2m+1 .

4. ⋆-conformal gradient Ricci solitons on (κ, µ)-almost coKähler
manifolds

In this section we study ⋆-conformal gradient Ricci solitons on non-coKähler
(κ, µ)-ACMs.

Let us consider a non-coKähler (κ, µ)-ACM M of dimension 2m+1 which
admits a ⋆-conformal gradient Ricci soliton. Then, from (6), we have

(45) ∇V1Dψ = (λ− 1

2
(q +

2

2m+ 1
))V1 −Q⋆V1,

where ψ : M → R is a smooth function on M.
Using (15) and (16) in (45), we obtain

(46) ∇V1Dψ = (λ+ κ− 1

2
(q +

2

2m+ 1
))V1 − κϱ(V1)θ.

Differentiating (46) covariantly with respect to V2, we get

(47)
∇V2

∇V1
Dψ = (λ+ κ− 1

2
(q +

2

2m+ 1
))∇V2

V1

− κ[∇V2
ϱ(V1)θ + ϱ(V1)∇V2

θ].

Interchanging V1 and V2 in (47), we obtain

(48)
∇V1

∇V2
Dψ = (λ+ κ− 1

2
(q +

2

2m+ 1
))∇V1

V2

− κ[∇V1
ϱ(V2)θ + ϱ(V2)∇V1

θ].
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Also, from (46), we get

(49) ∇[V1,V2]Dψ = (λ+ κ− 1

2
(q +

2

2m+ 1
))[V1, V2]− κϱ([V1, V2])θ.

Using (8), (47)-(49), we obtain

(50) R(V1, V2)Dψ = −κ[ϱ(V2)hϕV1 − ϱ(V1)hϕV2].

Consider the inner product with θ in (50), we infer

(51) g(R(V1, V2)Dψ, θ) = 0.

Taking inner product of (10) with Dψ, we obtain

(52)
g(R(V1, V2)θ,Dψ) = κ[(V1ψ)ϱ(V2)− (V2ψ)ϱ(V1)]

+ µ[(hV1ψ)ϱ(V2)− (hV2ψ)ϱ(V1)].

As g(R(V1, V2)V3, V4) = −g(R(V1, V2)V4, V3) for every vector fields V1, V2, V3
and V4 on the manifold, from (51) and (52), we get

κ[(V1ψ)ϱ(V2)− (V2ψ)ϱ(V1)] + µ[(hV1ψ)ϱ(V2)− (hV2ψ)ϱ(V1)] = 0.

Putting V2 = θ in the above equation, we obtain

(53) κ[(V1ψ)− (θψ)ϱ(V1)] + µ(hV1ψ) = 0.

Replacing V1 by hV1 in (53), we get

(54) (hV1ψ) = µ[(V1ψ)− (θψ)ϱ(V1)].

Therefore, from (53) and (54), we get

(κ+ µ2)[(V1ψ)− (θψ)ϱ(V1)] = 0,

Thus we get either κ = −µ2 or Dψ = (θψ)θ.
When Dψ = (θψ)θ, from (46), we obtain

(55) V1(θψ)θ + (θψ)hϕV1 = (λ+ κ− 1

2
(q +

2

2m+ 1
))V1 − κϱ(V1)θ.

Consider the inner product of (55) with V2, we obtain

(56)

V1(θψ)ϱ(V2) + (θψ)g(hϕV1, V2)

= (λ+ κ− 1

2
(q +

2

2m+ 1
))g(V1, V2)− κϱ(V1)ϱ(V2).

Putting V2 = θ in the above equation, we obtain

(57) V1(θψ) = (λ− 1

2
(q +

2

2m+ 1
))ϱ(V1).

From (56) and (57), we obtain

(58) (θψ)g(hϕV1, V2) = (λ+ κ− 1

2
(q +

2

2m+ 1
))(g(V1, V2)− ϱ(V1)ϱ(V2)).

Contracting V1 and V2 in the above equation and using tr(ϕh) = 0, we obtain

(59) (λ+ κ− 1

2
(q +

2

2m+ 1
)) = 0.
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Using (59) in (58), we obtain

(θψ)g(hϕV1, V2) = 0,

which gives (θψ) = 0. Thus, from the relation Dψ = (θψ)θ, we get Dψ = 0,
i.e., V = 0.

Thus we can state the following.

Theorem 4.1. Let M be a (2m+1)-dimensional non-coKähler (κ, µ)-ACM.
If M admits a ⋆-conformal gradient Ricci soliton, then either µ2 = −κ or the
soliton is trivial.

Applying Dψ = 0 in (46), we obtain

(60) (λ+ κ− 1

2
(q +

2

2m+ 1
))g(V1, V2)− κϱ(V1)ϱ(V2) = 0.

Contracting the above equation, we have

(61) λ =
q

2
+

1

2m+ 1
− 2mκ

2m+ 1
.

Again, putting V1 = V2 = θ in (60), we have

(62) λ =
1

2
(q +

2

2m+ 1
).

Comparing (61) and (62), we infer that κ = 0. As a result, we may establish
the following theorem.

Theorem 4.2. There does not exist ⋆-conformal gradient Ricci solitons on
non-coKähler (κ, µ)-ACMs.

5. Example

Let us consider the manifold M = {x, y, z ∈ R3 : z ̸= 0} of dimension 3,
where (x, y, z) are standard co-ordinates in R3. We choose the vector fields

ζ1 = e
z
2
∂

∂x
− e−

z
2
∂

∂y
, ζ2 = e

z
2
∂

∂x
+ e−

z
2
∂

∂y
, ζ3 =

∂

∂z
,

which are linearly independent at each point of M. We get the following by
direct computations:

[ζ1, ζ2] = 0, [ζ1, ζ3] = −1

2
ζ2, [ζ2, ζ3] = −1

2
ζ1.

Let the metric tensor g be defined by

g(ζ1, ζ1) = g(ζ2, ζ2) = g(ζ3, ζ3) = 1

and g(ζi, ζj) = 0 for every i ̸= j; i, j = 1, 2, 3.
The 1-form ϱ is defined by ϱ(V1) = g(V1, ζ3) for every V1 on M. Let ϕ be

the (1, 1)-tensor field defined by

ϕ(ζ1) = −ζ2, ϕ(ζ2) = ζ1, ϕ(ζ3) = 0.
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Then we find that

η(ζ3) = 1, ϕ2V1 = −V1 + η(V1)ζ3,

g(ϕV1, ϕV2) = g(V1, V2)− η(V1)η(V2)

for every vector fields V1, V2 on M. Thus (ϕ, ζ3, ϱ, g) defines an almost contact
metric structure.

For the components of Levi-Civita connection ∇ with respect to the metric
g on M , we can write

2g(∇V1
V2, V3) = V1g(V2, V3) + V2g(V3, V1)− V3g(V1, V2)

− g(V1, [V2, V3])− g(V2, [V1, V3]) + g(V3, [V1, V2]),

which is known as Koszul’s formula.
By Koszul’s formula, we get the following expressions:

∇ζ1ζ1 = 0, ∇ζ1ζ2 =
1

2
ζ3, ∇ζ1ζ3 = −1

2
ζ2,

∇ζ2ζ2 = 0, ∇ζ2ζ1 =
1

2
ζ3, ∇ζ2ζ3 = −1

2
ζ1,

∇ζ3ζ1 = 0, ∇ζ3ζ2 = 0, ∇ζ3ζ3 = 0.

The above data indicates that the given manifold is an ACM with hζ1 = − 1
2ζ1,

hζ2 = 1
2ζ2 and hζ3 = 0.

Using the formula R(V1, V2)V3 = ∇V1
∇V2

V3 − ∇V2
∇V1

V3 − ∇[V1,V2]V3, we
get

R(ζ1, ζ2)ζ1 = −1

4
ζ2, R(ζ1, ζ2)ζ2 =

1

4
ζ1, R(ζ2, ζ3)ζ3 = −1

4
ζ2,

R(ζ3, ζ2)ζ2 = −1

4
ζ3, R(ζ1, ζ3)ζ3 = −1

4
ζ1, R(ζ3, ζ1)ζ1 = −1

4
ζ3,

R(ζ1, ζ2)ζ3 = 0, R(ζ2, ζ3)ζ1 = 0, R(ζ3, ζ1)ζ2 = 0.

We may deduce from the foregoing that the manifold is a (κ, µ)-ACM with
κ = − 1

4 and µ = 0.
From the expressions of curvature tensor, we get

S(ζ1, ζ1) = 0, S(ζ2, ζ2) = 0, S(ζ3, ζ3) = −1

and S(ζi, ζj) = 0 for every i ̸= j; i, j = 1, 2, 3.
Let r be the scalar curvature. Then from above

r = S(ζ1, ζ1) + S(ζ2, ζ2) + S(ζ3, ζ3) = −1.

With the help of the curvature tensor, the components of ⋆-Ricci tensor are
given by

(63) S⋆(ζ1, ζ1) =
1

4
, S⋆(ζ2, ζ2) =

1

4
, S⋆(ζ3, ζ3) = 0

and S⋆(ζi, ζj) = 0 for every i ̸= j; i, j = 1, 2, 3.
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Therefore, the ⋆-scalar curvature r⋆ is given by

r⋆ =
1

2
.

Let the PVF V be the Reeb vector field ζ3. Then

(Lζ3g)(ζi, ζi) = 0

for every i = 1, 2, 3. Thus, from the equation (28), we get the following two
equations

2λ+ 2κ− (q +
2

3
) = 0

and

2λ− (q +
2

3
) = 0

which gives κ = 0. But the value of κ of the given manifold is − 1
4 , which proves

that the manifold M does not admit ⋆-conformal Ricci solitons if the PVF is
the Reeb vector field ζ3. This verifies Theorem 3.3.

Let us imagine that V = xe−
z
2 ζ1 + ye

z
2 ζ2 + 5

4zζ3. Then it is easy to see
that the equation (5) holds good. Thus the given manifold admits ⋆-conformal
Ricci solitons. Also λ = 19

12 + q
2 > 0, i.e., the soliton is shrinking, that verifies

Corollary 3.5. Also (LVϱ)(V1) =
5
4ϱ(V1) for every vector field V1 on M. This

indicates V is an infinitesimal contact transformation. Hence Theorem 3.6 is
verified.

Let the potential vector field V(= xe−
z
2 ζ1 + ye

z
2 ζ2 +

5
4zζ3) be the gradient

of a smooth function ψ. Then we can obtain the following partial differential
equations:

∂ψ

∂x
=

1

2
(xe−z + y),

∂ψ

∂y
=

1

2
(yez − x),

∂ψ

∂z
=

5

4
z.

From the above set of equations, one obtains

∂2ψ

∂x∂y
̸= ∂2ψ

∂y∂x
.

Thus V can not be the gradient of any smooth function. Hence Theorem 4.2 is
verified.
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