DOI QR코드

DOI QR Code

Radiometric examination of fertilizers and assessment of their health hazards, commonly used in Pakistan

  • Hannan Younis (Department of Physics, COMSATS University Islamabad) ;
  • Sumbilah Shafique (Department of Physics, COMSATS University Islamabad) ;
  • Zahida Ehsan (The Landau-Feynman Laboratory for Theoretical Physics, CUI, Lahore Campus) ;
  • Aleena Ishfaq (Department of Physics, COMSATS University Islamabad) ;
  • Khurram Mehboob (K. A. CARE Energy Research and Innovation Center, Department of Nuclear Engineering, King Abdul Aziz University) ;
  • Muhammad Ajaz (Department of Physics, Abdul Wali Khan University Mardan) ;
  • Abdullah Hidayat (Department of Physics, Florida Atlantic University) ;
  • Wazir Muhammad (Department of Physics, Florida Atlantic University)
  • Received : 2022.10.29
  • Accepted : 2023.03.17
  • Published : 2023.07.25

Abstract

The radioactivity concentrations of Naturally Occurring Radioactive Materials (NORM) i.e., 226Ra, 232Th, and 4K in various chemical fertilizers being used in the agricultural soil of Pakistan were determined utilizing gamma spectrometry by employing a High Purity Germanium (HPGe) detector. The radioactivity concentrations of 226Ra, 232Th, and 4K extended from 2.58 ± 0.8-265.7 ± 8.8 Bq kg-1, 1.53 ± 0.14-76.6 ± 1.07 Bq kg-1 and 36.5 ± 1.34-15606.7 ± 30.2 Bq kg-1 respectively. The radiological hazard parameters such as internal and external indices and annual effective dose rates were calculated, while excessive lifetime cancer risk factors for the indoor and outdoor areas were found in the range from 0.3×10-3 to 10.723×10-3 and 0.03×10-3 to 2.7948×10-3 of most fertilizers, however, some values were slightly higher than the UNSCEAR (The United Nations Scientific Committee on the Effects of Atomic Radiation) recommended values for potash-containing fertilizers such as MOP (Muriate of Potash).

Keywords

Acknowledgement

The authors acknowledge the support provided by King Abdullah City for Atomic and Renewable Energy (KA CARE) under K.A. CARE King Abdulaziz University Collaboration Program. This research work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant number (IFPIP:18-135-1443). Therefore, the authors gratefully acknowledge technical and financial support provided by the ministry of education and king Abdulaziz university, DSR, Jeddah, Saudi Arabia.

References

  1. F.G. Davis, J.D. Boice, Z. Hrubec, R.R. Monson, Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients, Cancer Res. 49 (21) (1989) 6130-6136.
  2. D. Mugendi, M. Mucheru-Muna, J. Mugwe, J. Kung'u, A. Bationo, Improving food production using 'best bet'soil fertility technologies in the Central Highlands of Kenya, in: Advances in Integrated Soil Fertility Management in Sub-saharan Africa: Challenges and Opportunities, Springer, Dordrecht, 2007, pp. 345-351.
  3. H.F. Reetz, Fertilizers and Their Efficient Use, International Fertilizer Industry Association, IFA, 2016.
  4. R. Lambert, C. Grant, S. Sauve, Cadmium and zinc in soil solution extract following the application of phosphate fertilizers, Sci. Total Environ. 378 (3) (2007) 293-305. https://doi.org/10.1016/j.scitotenv.2007.02.008
  5. D.I.T. Favaro, Natural radioactivity in phosphate rock, phosphogypsum, and phosphate fertilizers in Brazil, J. Radioanal. Nucl. Chem. 264 (2) (2005) 445-448. https://doi.org/10.1007/s10967-005-0735-4
  6. J. Cooper, R. Lombardi, D. Boardman, C. Carliell-Marquet, The future distribution and production of global phosphate rock reserves, Resour. Conserv. Recycl. 57 (2011) 78-86. https://doi.org/10.1016/j.resconrec.2011.09.009
  7. UNSCEAR, Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 2000 Report to the General Assembly, with Scientific Annexes, 2000.
  8. M. Rafique, S.U. Rahman, M. Basharat, W. Aziz, I. Ahmad, K.A. Lone, Khalil Ahmad, Matiullah, Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley, J. Radiate. Res. Appl. Sci. 7 (1) (2014) 29-35. https://doi.org/10.1016/j.jrras.2013.11.005
  9. A.E. Khater, H.A. Al-Sewaidan, Radiation exposure due to agricultural uses of phosphate fertilizers, Radiat. Meas. 43 (8) (2008) 1402-1407. https://doi.org/10.1016/j.radmeas.2008.04.084
  10. Hannan Younis, et al., Gamma radioactivity and environmental radiation risks of granitoids in central and western gilgit-baltistan, himalayas, north Pakistan, J. Result Phys. 37 (2022), 105509. ISSN 2211-3797.
  11. H.H. Azeez, S.T. Ahmad, H.H. Mansour, Assessment of radioactivity levels and radiological-hazard indices in plant fertilizers used in the Iraqi Kurdistan region, J. Radioanal. Nucl. Chem. 317 (3) (2018) 1273-1283. https://doi.org/10.1007/s10967-018-6001-3
  12. K. Khan, H.M. Khan, M. Tufail, A.J.A.H. Khatibeh, N. Ahmad, Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan, J. Environ. Radioact. 38 (1) (1998) 77-84. https://doi.org/10.1016/S0265-931X(97)00018-0
  13. NUCL-Glenn F[1]. Knoll. Radiation Detection and Measurement third ed..
  14. Qureshi Aziz Ahmed, Jadoon Ishtiaq Ahmed Khan, Wajid Ali Abbas, Ahsan Attique, Masood Adil, Muhammad Anees, Shahid Manzoor, Abdul Waheed, Aneela Tubassam, Study of natural radioactivity in Mansehra granite, Pakistan: environmental concerns, Radiat. Protect. Dosim. ume 158 (4) (March 2014) 466-478. https://doi.org/10.1093/rpd/nct271
  15. Aziz Ahmed Qureshi, et al., Assessment of radiological hazards of lawrencepur sand, Pakistan using gamma spectrometry, Radiat. Protect. Dosim. (2013) 1-12, https://doi.org/10.1093/rpd/nct105.
  16. Ricardo W.D. Garcez, et al., Determination of Specific Concentrations of 40k, 238u And 232th In Mineral Fertilizer Samples, - INAC, October 4-9, 2015, ASSOCIACAO BRASILEIRA DE ENERGIA NUCLEAR - ABEN, Sao Paulo, SP, Brazil, 2015, ISBN 978-85-99141-06-9.
  17. N.M. Hassan, N.A. Mansour, M. Fayez-Hassan, E. Sedqy, Assessment of natural radioactivity in fertilizers and phosphate ores in Egypt, J. Taibah Univ. Sci. 10 (2) (2016) 296-306. https://doi.org/10.1016/j.jtusci.2015.08.009
  18. H.M. Diab, S.A. Nouh, A. Hamdy, S.A. El-Fiki, Evaluation of natural radioactivity in a cultivated area around a fertilizer factory, Nuclear Radiate. Phys. 3 (1) (2008) 53-62.
  19. A.E. Khater, H.A. Al-Sewaidan, Radiation exposure due to agricultural uses of phosphate fertilizers, Radiat. Meas. 43 (8) (2008) 1402-1407. https://doi.org/10.1016/j.radmeas.2008.04.084
  20. W. Muhammad, A. Ullah, S. Tahir, F. Ullah, M. Khan, An overview of radioactivity measurement studies in Pakistan, Rev. Environ. Health 34 (2) (2019) 141-152. https://doi.org/10.1515/reveh-2018-0058
  21. N. Akhtar, M. Tufail, M. Ashraf, M.M. Iqbal, Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan, Radiat. Meas. 39 (1) (2005) 11-14. https://doi.org/10.1016/j.radmeas.2004.02.016
  22. J.H. Kim, Three principles for radiation safety: time, distance, and shielding, Korea J Spain 31 (3) (2018) 145.
  23. A.A. Qureshi, et al., Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan, J. Radiat. Res. Appl. Sci. 7 (4) (2014) 438-447. https://doi.org/10.1016/j.jrras.2014.07.008
  24. M. Rafique, S.U. Rahman, M. Basharat, W. Aziz, I. Ahmad, K.A. Lone, Khalil Ahmad, Matiullah, Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley, J. Radiate. Res. Appl. Sci. 7 (1) (2014) 29-35. https://doi.org/10.1016/j.jrras.2013.11.005
  25. E.J. Hall, Changes in relative biological effectiveness with a depth of neutron beams, Br. J. Radiol. 62 (740) (1989), 765-765. https://doi.org/10.1259/0007-1285-62-740-765-a
  26. J.J.M. De Goeij, M.L. Bonardi, How do we define the concepts of specific activity, radioactive concentration, carrier, carrier-free, and no-carrier-added? J. Radioanal. Nucl. Chem. 263 (1) (2005) 13-18. https://akjournals.com/view/journals/10967/263/1/article-p13.xml. 10967/263/1/article-p13.xml
  27. B. Shapiro, in: 1990 Recommendations of the International Commission on Radiological Protection: ICRP Publication, vol. 60, Pergamon Press, 1992, 1991.
  28. P. Chauhan, R.P. Chauhan, M. Gupta, Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques, Microchem. J. 106 (2013) 73-78. https://doi.org/10.1016/j.microc.2012.05.007
  29. Hannan Younis, et al., Gamma radioactivity and environmental radiation risks of granitoids in central and western gilgit-baltistan, himalayas, north Pakistan, Results Phys. 37 (2022), 105509, https://doi.org/10.1016/j.rinp.2022.105509. ISSN 2211-3797.
  30. Hannan Younis, et al., Study of radioactivity in bajaur norite exposed in the himalayan tectonic zone of northern Pakistan, Atmosphere 12 (11) (2021) 1385, https://doi.org/10.3390/atmos12111385.
  31. Sohail Ahmad, et al., Measurement of indoor radon concentration in district Mardan, Khyber Pakhtunkhwa, Pakistan, Nuclear Phys. Atomic Energy.19(2) (2018) 190-195. https://doi.org/10.15407/jnpae2018.02.190.
  32. Wassila Boukhenfouf, Ahmed Boucenna, The radioactivity measurements in soils and fertilizers using the gamma spectrometry technique, J. Environ. Radioact. 102 (2011) 336-339, https://doi.org/10.1016/j.jenvrad.2011.01.006.
  33. N.K. Ahmed, A.G.M. El-Arabi, Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt, J. Environ. Radioact. 84 (2005) 51-64. https://doi.org/10.1016/j.jenvrad.2005.04.007
  34. V.A. Becegato, F.J.F. Ferreira, W.C.P. Machado, The concentration of radioactive elements (U, Th, and K) is derived from phosphatic fertilizers in cultivated soils, Braz. Arch. Biol. Technol. 51 (6) (2008), 1255-1266. https://doi.org/10.1590/S1516-89132008000600022