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Special Article

Traditional mediation analysis, which relies on linear regression models, has faced criticism due to its limited suitability for cases in-

volving different types of variables and complex covariates, such as interactions. This can result in unclear definitions of direct and in-

direct effects. As an alternative, causal mediation analysis using the counterfactual framework has been introduced to provide clearer 

definitions of direct and indirect effects while allowing for more flexible modeling methods. However, the conceptual understanding 

of this approach based on the counterfactual framework remains challenging for applied researchers. To address this issue, the pres-

ent article was written to highlight and illustrate the definitions of causal estimands, including controlled direct effect, natural direct 

effect, and natural indirect effect, based on the key concept of nested counterfactuals. Furthermore, we recommend using 2 R pack-

ages, ‘medflex’ and ‘mediation’, to perform causal mediation analysis and provide public health examples. The article also offers cave-

ats and guidelines for accurate interpretation of the results.
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INTRODUCTION

Mediation analysis is a valuable tool in medical and epide-
miological studies for identifying causal mechanisms between 
a treatment or exposure and an outcome [1-3]. Traditionally, 
mediation analysis is based on normal linear models (e.g., lin-
ear regression, linear structural equation modeling), termed 
traditional mediation analysis [4,5], and has been widely used 
in empirical studies [2]. However, the traditional approach has 
faced criticism due to its limitations. Regarding model specifi-
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cations, it cannot accommodate all types of variables (such as 
binary outcomes) and a wide range of functional forms [6,7]. 
Specifically, the estimates obtained by the traditional approach 
can be biased in the presence of non-linearities or interactions 
[2]. Furthermore, if researchers include various types of vari-
ables or employ flexible techniques reflecting different func-
tional forms, the conventional methods (e.g., the difference or 
product method for indirect effects) lose their validity [2,3,7,8]. 
Consequently, the resulting estimates often become uninter-
pretable. This difficulty in interpreting direct and indirect ef-
fects is a critical issue in traditional mediation analysis.

In contrast to the traditional approach, causal mediation 
analysis (CMA) employs a well-defined distinction between di-
rect and indirect effects through the counterfactual framework. 
CMA considers the traditional approach as a specific instance, 
permitting a broader array of outcome variables and sophisti-
cated modeling techniques [9]. As a result, CMA has been pro-
gressively employed in medical and epidemiological research 
to enhance the comprehension of causal mechanisms. How-
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ever, applying CMA necessitates a solid understanding of the-
oretical concepts associated with the counterfactual frame-
work, which may be unfamiliar to empirical researchers.

The aim of this study was to provide empirical researchers 
with a comprehensive understanding of CMA. First, we clarify 
basic concepts such as nested counterfactuals and the defini-
tions of causal estimands, including the controlled direct ef-
fect, natural direct effect, and indirect effect. Second, we illus-
trate the identification conditions for these causal estimands 
in an intuitive manner. Third, we outline the practical applica-
tion of CMA using 2 R packages (R Foundation for Statistical 
Computing, Vienna, Austria), ‘medflex’ [10] and ‘mediation’ [11]. 
Specifically, this article focuses on the caveats and guidelines 
for accurate interpretation by comparing the 2 packages through 
a public-health-related example.

BASIC FRAMEWORK OF CAUSAL MEDIATION 
ANALYSIS 

In this section, we outline the basic framework pertaining to 
CMA.

Nested Counterfactuals
The first step in CMA involves clearly defining the causal es-

timands of interest, such as direct and indirect effects. These 
estimands are based on nested counterfactuals, which have 
been extensively discussed in the literature [8,12-14]. For read-
ers unfamiliar with this concept, we first present a brief intro-
duction to causal effects based on counterfactual or potential 
outcomes [15-18]. For instance, let us consider the preventive 
effect of influenza vaccination. How can we define the causal 
effect of the vaccine on an individual? The answer is based on 
human logical reasoning. Suppose we can observe 2 outcomes 
(1, infected; 0, not infected) depending on the vaccination sta-
tus of the individual. One outcome is observed in the vaccinat-
ed scenario and the other in the unvaccinated scenario. If the 
difference between these 2 outcomes is not equal to 0, we can 
conclude that a vaccination effect is present. This difference, 
known as the individual causal effect [19,20], is represented as 
follows:

in which  and  denote potential or counterfactual outcomes 
under treatment and control conditions, respectively. Howev-
er, readers may notice that the quantity above is not observ-

able in a concrete sense, as we can only observe either of the 2 
outcomes [20,21]. This is the essence of potential or counter-
factual outcomes. To circumvent this issue, the standard ap-
proach involves focusing on the causal effect on average [18], 
which is referred to as the average causal effect (ACE) [18,21] 
or average treatment effect (ATE) [17,22,23]. The ACE repre-
sents the average effect of the treatment in comparison to the 
control across all units [22] and can be expressed as:

Next, we proceed to nested counterfactuals. Consider the sim-
ple example shown in Figure 1 [14]. In the original paper, con-
founders are included, but we set them aside momentarily to 
simplify the illustration. The graph represents a hypothetical 
causal structure in which the application of early invasive 
treatment, X (1, treatment; 0, control), to patients hospitalized 
for acute coronary syndrome influences both secondary pre-
ventive medication, M (1, provided; 0, not provided), and 
death, Y (1, deceased; 0, alive). Subsequently, secondary pre-
ventive medication affects cardiac death. Here, M is referred to 
as the mediator.

In CMA, the counterfactual expression of Y is somewhat 
complex, as it relies on the fact that M is affected by X. Hence, 
the mediator is also represented as a counterfactual depend-
ing on the treatment status. This explains why the term “nest-
ed” is used. We will further explain nested counterfactuals us-
ing the example provided earlier. Suppose a man is hospital-
ized for acute coronary syndrome, and that X is equal to 1 if he 
is assigned to the treatment group. M1 and M0 denote M un-
der the treatment condition and under the control, respec-
tively. The counterfactual expression of the outcome depends 
on combinations of X (1, treatment; 0, control) and M (M1, 
M0). For example,  denotes the counterfactual cardiac 
death outcome if the man belonged to the treatment group, 
and the mediator was at the mediator status that would have 

Figure 1. The hypothesized causal mediation model by Lange 
et al. [14]
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been obtained under the treatment condition. Similarly,  
denotes the counterfactual cardiac death outcome if the man 
belonged to the treatment group, while the mediator was at 
the mediator status that would have been obtained under 
control conditions.  may seem illogical to some readers 
because the treatment status (1) differs from the treatment 
status in the mediator (0). Importantly, however, we are de-
scribing the outcome in the counterfactual framework, not 
the actual occurrence. Here, it is worth mentioning that the 
mediator in the counterfactual outcomes ( , ) can vary 
among individuals, rather than being fixed at a specific value. 
Readers will see that the remaining counterfactual outcomes, 

 and , are defined similarly.
Although we have thus far limited our focus to binary treat-

ments, this framework can be extended to multicategorical or 
continuous treatments. For continuous X, we choose 2 certain 
values, x and x’, of X. Then, the nested counterfactual out-
comes were represented as , ,  and . 

Natural Direct and Indirect Effects
In this subsection, we illustrate the direct and indirect effects 

based on nested counterfactuals. In simple terms, the direct 
effect refers to the effect of X that is not mediated through M 
[24]. Readers can easily understand that in Figure 1, the arrow 
from X to Y represents the direct effect. Furthermore, the fig-
ure intuitively suggests why M affected by X should be fixed 
in some way to formally define the direct effect. Otherwise, an 
effect may exist through the mediator M. Depending on how 
the mediator is fixed, 2 types of direct effects have been wide-
ly studied in CMA. One is known as the controlled direct effect 
(CDE), which expresses the average change in the outcome 
when the mediator is fixed at the value of m for the whole pop-
ulation, but the treatment is changed from x’ to x [12,24]. Using 
the nested counterfactual notation, the CDE is represented as:

The natural direct effect (NDE) is defined as the change in the 
outcome if the treatment were set at x versus x’, while the me-
diator for each individual is set at the value it would have tak-
en for that individual under the treatment status x’ [12,4]. Us-
ing nested counterfactual notation, the formal definition of 
NDE is defined as:

To clarify the difference between the 2 direct effects, we re-
visit the example in Figure 1. In the example, the  
represents the average change in cardiac death probability by 
the treatment while all the mediators were fixed at m. For in-
stance, researchers may examine CDE (1) to understand the 
treatment effect under the policy of mandating secondary 
preventive medication for patients. In contrast, the NDE allows 
secondary preventive medication to vary among patients, 
which illustrates the concept of “natural” effect.

Next, we will discuss the indirect effect, which represents 
the impact of the treatment through the mediator of interest 
[24]. Formally, the natural indirect effect (NIE) describes the 
average change in the outcome if the treatment were main-
tained at the status x but the mediator were altered from the 
value it would take under the treatment status x’, to the value 
it would take under treatment status x [12]. Using the nested 
counterfactual notation, the NIE can be expressed as:

A connection exists between NDE, NIE, and ACE. ACE can be 
broken down into the sum of NDE and NIE (i.e., 

), which aligns with the understanding that ACE repre-
sents the total effect of X. However, this is not the sole method 
for decomposing ACE, as causal effects can be defined on vari-
ous scales depending on the types of outcomes. For instance, 
the causal effect for binary outcomes, as demonstrated in Fig-
ure 1, is frequently defined on the odds ratio (OR) scales as fol-
lows [24,25].

On the OR scale, the product of 2 ORs representing the NDE 
and NIE is equivalent to the OR for the total effect [24,25].

Identifying Direct and Indirect Natural Effects
NDE and NIE cannot be generally identified based on ob-

served data alone. It is crucial to determine the conditions un-
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der which NDE and NIE can be identified. To identify these ef-
fects, both consistency and positivity are necessary. Consis-
tency implies that the nested counterfactual  is equal to 
the observed outcome under X=x and M=m for all x and m, 
and  is equal to the observed mediator when the treatment 
value is x for all x. The latter states that all treatment values 
given confounders C have non-zero probabilities between 0 
and 1, and all mediator values given confounders and the 
treatment value also have non-zero probabilities between 0 
and 1 [14]. For continuous X and M values, the probability is 
replaced by the corresponding density value. Additional as-
sumptions are needed to identify NDE and NIE. Various ver-
sions of the identification conditions for NDE and NIE exist in 
the literature. Although these conditions are not mathemati-
cally equivalent, they resemble one another. One such version 
[3,14,24] can be expressed as follows.

Assumption 1 (identification)
NDE and NIE can be identified if:
A1. �No unmeasured confounders exist for any pair of treatment 

and mediator (X, M), treatment and outcome (X, Y), and 
mediator and outcome (M, Y) given C.

A2. �No confounders of the mediator (M)-outcome (Y) relation-
ship are affected by the treatment (X), given C.

Instead of A2, Pearl [12] employed the so-called cross-world 
independence assumption for identifying NDE and NIE, which 
states that given C, the counterfactual outcome under the 
treatment status x and mediator status m is independent of 
the counterfactual mediator under the treatment state x’ for 
any m and x≠x’ (i.e.,  ). Important-
ly, the randomization of X alone does not satisfy the identifica-
tion conditions in general. This is because confounders of M 
and Y may exist even if X is randomized [24]. Therefore, like 
other causal inferences from observational studies, research-
ers need to carefully include confounders based on the causal 
structures. Detailed descriptions and technical proofs of the 
identification and related assumption, as well as presenting 
the pioneering frameworks of the NDE and NIE are provided in 
[12,26,27]. Moreover, Pearl [28,29] suggested the implications 
of the cross-world independence assumption and related al-
ternatives under mild conditions in terms of the non-paramet-
ric structural equation models. A different and stringent ver-
sion of the cross-world independence assumption has been 
articulated by Imai et al. [6,30,31]. 

Once a proper set of confounders is adjusted, conditional 
CDE, NDE, and NIE are defined as shown below. 

For binary outcomes, the corresponding 3 effects using ORs 
are defined as follows.

To explain how the conditional expectations of the nested 
counterfactuals are calculated, we focus on the conditional 
expectation of  given the confounders C. This is the most 
enigmatic aspect of the situation, because  is never ob-
served in the real world. The conditional expectation is derived 
from Pearl [12]’s mediation formula (with M assumed to be 
discrete), written as:

and the last 2 expressions are provided in [13]. In this formula, 
 denotes the probability of M given X=x’, C. Be-

cause the second expression is not directly applicable to real-
world data owing to the counterfactuals, we use the third ex-
pression in practice. That expression is derived through consis-
tency in conjunction with the described identification as-
sumptions.

Most R packages implementing CMA are based on the me-
diation formula, although their versions differ. The R package 
‘mediation’ estimates the marginal or population-averaged 
NDE and NIE by averaging the conditional NDE and NIE over 
the confounders [11]. Because its key causal estimand is 
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 , it requires fitting 2 sepa-
rate models for the mediator and the outcome. In contrast, the 
other R package ‘medflex’ employs the fourth and last expres-
sions. The weighting method in this package uses  

 as weights in the fourth expression (function neW-
eight), and the imputation method uses   as the 
imputed outcome in the fifth expression when x is not equal 
to the observed status for each individual (function neImpute). 
Detailed examples using both R packages are provided in the 
next section. 

APPLICATION OF CAUSAL MEDIATION 
ANALYSIS VIA R PACKAGES

In this section, we present a detailed illustration of 2 R pack-
ages, ‘medflex’ and ‘mediation,’ for CMA. Both packages not 
only support various types of treatments, mediators, and out-
comes, but also allow flexible regression modeling. For this 
reason, they have been broadly used in many areas. However, 
notwithstanding their widespread use, there are some caveats 
that users should note. The detailed results of the following 
tables and corresponding R code are presented in the Supple-
mental Material 1.

For comparison, we generated hypothetical data based on 
Patel et al. [32], who investigated the causal relationship be-
tween education and the Dietary Approach to Stop Hyperten-
sion (DASH) diet, which prevents risk factors for cardiovascular 
diseases [32]. In the data, education (EDU) is a multicategorical 
treatment (0, degree or equivalent; 1, higher education below 
degree level; 2, general certificate of secondary education; 3, 
no qualification), annual income (INCOME) is a binary media-
tor (1, higher than 15 850 £/y; 0, lower than 15 850 £/y), and 
the outcome DASH score (DASH) represents the degree of 
compliance to the dietary approach to stop hypertension 
(range, 8 to 40). To provide the examples for both binary and 
continuous outcomes, we dichotomized the DASH score into 
the binary variable DASH_B. DASH_B indicates whether an in-
dividual possesses a higher-than-average DASH score (1, high; 
0, low). In addition, 4 confounders (SEX, RACE, AGE, and AREA) 
are included in the model. The hypothesized causal structure 
is depicted in Figure 2. 

First, we deal with the binary outcome DASH_B using the 2 
R packages. The weighting-based method [13] of ‘medflex’ 
computes the ratio of the conditional probabilities of the me-
diator given the treatment state x’ and covariates to that given 

the treatment state x and covariates, with neWeight function. 
Therefore, it is necessary to fit a model for the mediator. We 
used logistic regression for the binary mediator INCOME (M) as 
below. In the regression model,  (j=1, 2, 3) refers to a dum-
my variable that equals 1 only when X= j, and 0 otherwise 
(reference group, X=0). In addition, AREA is also transformed 
into the 5 dummy variables (reference, AREA=1), and the 
squared term of AGE (AGE2) is included.

On the contrary, the imputation-based method does not re-
quire the specification of the mediator model [10]. Instead, the 
method requires an imputation model to impute the nested 
counterfactual using fitted values of conditional expectation 
given the mediator, confounders, and the opposite status of 
the observed treatment via the neImpute function. In this ex-
ample, we consider the following imputation model:

With the expanded data from either the weighting or the 
imputation method, the package computes the estimates of 
(conditional) NDE and NIE. However, readers who utilized ‘med-
flex’ for the first time may be confused in finding the estimates 
of conditional NDE and NIE because the interpretation is ob-
tained via the natural effect model [8,13]. This is a regression 
model used for the nested counterfactual so that regression 
coefficients can be directly interpreted as conditional NDE or 
NIE. In this example, the natural effect model (or logistic natu-
ral effect model) is represented as follows:

where  indicates the value of 1 only when x= j (j=1, 2, 3) 
and 0 otherwise, and  (k=1, 2, 3) is also similarly defined for 
x’. In this formula,  refer to the conditional NDE, while 

Figure 2. The hypothesized causal model by Patel et al. [32]. 
EDU, educzation; INCOME, annual income; DASH, Dietary Ap-
proach to Stop Hypertension score. 
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 indicate the conditional NIEs of the 3 groups compared 
to the group 0 (on the logit scale). When using this package, 
users should insert the treatment immediately after the wave 
dash (~) of the formula. Otherwise, estimates different from 
the intended causal estimands would be yielded (for instance, 
if the formula is described as  

 in the mediator model,  is automatically con-
sidered the treatment). Detailed illustrations are provided in 
the online supplement [10]. Table 1 shows conditional NDE 
and NIE estimates obtained by the 2 methods provided by the 
‘medflex’ package.

For each method, the estimates in each row of  
correspond to the estimates of the conditional NDE ( ), 
while the estimates in each row of  refer to the es-
timates of the conditional NIE ( ). In the table, the esti-
mates from the weighting-based method show slight differ-
ences compared to those obtained with the imputation-based 
method; however, the signs and hypothesis testing exhibit 

similar trends. Notably, these estimates were calculated on the 
logit scale, using a logistic natural effect model. As a result, it is 
useful to exponentiate the estimates as follows (we simply used 
the results for groups 0 and 1 from the weighting-based meth-
od), which leads to the estimates of conditional NDE and NIE 
on the OR scale:

We conclude that if an individual had a higher education 
level below a degree (group 1) compared to a degree or equiv-
alent (group 0), it directly reduces the odds (the ratio of the 
probability of having higher DASH status to the probability of 
having lower DASH status) by approximately 0.735 times, giv-
en individual characteristics ( , , , and ). 

Similarly,  can be interpreted as mentioned in the previ-
ous section. Moreover, we can also obtain the  of , 

 as shown below (the corresponding codes are available 
in the Supplemental Material 1). 

The third column in each method refers to the measures of 
proportion mediated [24], which are defined as the ratio of 
NIE to the total effect. In fact, these measures were not origi-
nally supported in the ‘medflex’ package, but we provide R 
code for readers in the online Supplemental Mateial 1. In prac-
tical studies, these measures may offer valuable information 
about the extent of mediation. However, users should be care-
ful when utilizing them, as they can be larger than 1 when 
NDE and NIE have different signs. In this example, both esti-
mates have the same sign. Additionally, these measures 
should not be interpreted on the OR scale, as they are calculat-
ed on the logit scale.

Next, we will examine the results from the ‘mediation’ pack-
age. Table 2 displays the results derived from the same datas-

Table 1. Causal mediation analysis results of 2 methods using 
‘medflex’ (binary outcomes)

Variables Weighting-based 
method p-value Imputation-based 

method p-value

Method

Intercept -2.746 (0.330) <0.001 -2.796 (0.319) <0.001 

EDU01 -0.307 (0.083) <0.001 -0.277 (0.080) 0.001 

EDU02 -0.454 (0.089) <0.001 -0.426 (0.087) <0.001 

EDU03 -0.717 (0.095) <0.001 -0.691 (0.093) <0.001 

EDU11 -0.017 (0.008) 0.032 -0.013 (0.006) 0.018 

EDU12 -0.041 (0.019) 0.032 -0.040 (0.016) 0.010 

EDU13 -0.033 (0.015) 0.030 -0.037 (0.015) 0.011 

SEX 0.005 (0.061) 0.931 0.021 (0.059) 0.725 

RACE 0.457 (0.128) <0.001 0.414 (0.119) <0.001 

AREA2 0.071 (0.117) 0.541 0.073 (0.112) 0.513 

AREA3 0.236 (0.093) 0.012 0.216 (0.090) 0.017 

AREA4 0.145 (0.105) 0.168 0.101 (0.102) 0.321 

AREA5 0.329 (0.110) 0.003 0.336 (0.107) 0.002 

AREA6 0.261 (0.112) 0.020 0.232 (0.108) 0.031 

AGE 0.093 (0.012) <0.001 0.094 (0.012) <0.001 

AGE 2 -0.001 (0.000) <0.001 -0.001 (0.000) <0.001 

Group1

EDU=1 0.052 (0.000, 0.389) 0.046 (0.000, 0.459)

EDU=2 0.082 (0.000, 0.299) 0.086 (0.000, 0.309)

EDU=3 0.044 (0.000, 0.210) 0.051 (0.000, 0.217)

Values are presented as estimate±standard error or proportion mediated 
(95% confidence interval); 95% confidence intervals were truncated if they 
were located outside the range of 0 to 1.
1The reference group was EDU=0 (degree or equivalent). 

Table 2. Causal mediation analysis results using ‘mediation’ 
(binary outcomes)

Group1 ADE (control) ACME (treated) PM

EDU=1 -0.066 (-0.103, -0.030) -0.004 (-0.008, 0.000) 0.059 (0.013, 0.140)

EDU=2 -0.101 (-0.140, -0.060) -0.011 (-0.019, 0.000) 0.100 (0.021, 0.200)

EDU=3 -0.163 (-0.205, -0.120) -0.008 (-0.016, 0.000) 0.050 (0.010, 0.090)

Values are presented as estimate (95% lower confidence interval).
ADE, average direct effect; ACME, average causal mediation effect; PM, 
proportion mediated.
1The reference group was EDU=0 (degree or equivalent). 
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et. Unlike ‘medflex,’ this package executed separate models for 
each pair (0 and 1, 0 and 2, and 0 and 3). We combined the 3 
tables into 1 for easier comparison. In this package, ACME in-
dicates the average causal mediation effect and ADE the aver-
age direct effect [6,11]. ACME and ADE correspond to NIE and 
NDE, respectively. The estimates generated using the same 
data with the ‘mediation’ package can be found in Table 2.

Readers may find it challenging to compare the estimates in 
Table 2 with those in Table 1. We can attribute this discrepancy 
to 2 primary factors. First, the estimates provided by the ‘me-
diation’ package for binary outcomes are calculated on the risk 
difference scale [11,25]. As a result, it is essential to recognize 
that all estimates from this package should be interpreted as 
an increase in probability, not as a ratio [11]. Second, as briefly 
mentioned earlier, ADE and ACME in the ‘mediation’ package 
correspond to the marginal NDE and NIE, respectively. In con-
trast, the ‘medflex’ package provides the conditional NDE and 
NIE by default (To compute the marginal estimates in ‘medflex’, 

users can employ the ‘xFit’ option along with additional model 
fitting; the corresponding R code is available in the Supple-
mental Material 1). For instance, ADE and ACME estimates of 

=1 in Table 2 indicate the following quantities. Conse-
quently, the estimates on the OR scale and those on the differ-
ence scale have different interpretations in practice. Impor-
tantly, estimates on the OR scale and those on the difference 
scale have different practical interpretations.

Now, let us examine a case with a continuous outcome. The 
hypothesized model in the subsequent results was identical to 
the previous binary outcome model, except that the continu-
ous DASH score was utilized. The estimates from both packag-
es are displayed in Tables 3 and 4. The following results were 
also derived using the natural effect models. The model speci-
fication is akin to the binary model, but the identity link was 
employed instead of the logit link.

In contrast to the binary outcome case, we observe that the 
results produced by the 2 different packages are similar. This 
similarity arises because the causal estimands for both pack-
ages are defined on the same scale for continuous outcomes 
(i.e., difference). However, it is important to emphasize that 
the estimates obtained through ‘medflex’ and ‘mediation’ rep-
resent the conditional and marginal natural effects, respec-
tively. Additionally, it is worth noting that the difference be-
tween conditional and marginal estimates can be substantial 
when interactions are present (e.g., an interaction between 
EDU and RACE). In the current example, we have:

Table 3. Causal mediation analysis results of 2 methods using 
‘medflex’ (continuous outcomes)

Variables Weighting-based 
method  p-value Imputation-based 

method  p-value

Method

Intercept 16.160 (0.773) <0.001  16.043 (0.742) <0.001 

EDU 01 -0.631 (0.202) 0.002 -0.607 (0.199) 0.002 

EDU 02 -0.923 (0.225) <0.001 -0.877 (0.220) <0.001 

EDU 03 -2.037 (0.229) <0.001 -2.029 (0.225) <0.001 

EDU 11 -0.063 (0.022) 0.003 -0.046 (0.016) 0.003 

EDU 12 -0.157 (0.048) 0.001 -0.137 (0.040) 0.001 

EDU 13 -0.127 (0.039) 0.001 -0.127 (0.038) 0.001 

SEX 0.176 (0.152) 0.247 0.202 (0.149) 0.175 

RACE 1.560 (0.337) <0.001 1.518 (0.318) <0.001 

AREA2 0.180 (0.290) 0.535 0.207 (0.278) 0.457 

AREA3 0.625 (0.233) 0.007 0.612 (0.227) 0.007 

AREA4 0.079 (0.255) 0.756 0.036 (0.246) 0.882 

AREA5 0.892 (0.280) 0.001 0.919 (0.273) 0.001 

AREA6 0.350 (0.280) 0.211 0.329 (0.269) 0.222 

AGE 0.250 (0.030) <0.001 0.253 (0.029) <0.001 

AGE 2 -0.002 (0.000) <0.001 -0.002 (0.000) <0.001 

Group1

EDU=1 0.091 (0.000, 1.000) 0.070 (0.000, 1.000)

EDU=2 0.145 (0.000, 0.375) 0.135 (0.000, 0.377)

EDU=3 0.059 (0.000, 0.207) 0.059 (0.000, 0.205)

Values are presented as estimate±standard error or proportion mediated 
(95% confidence interval); 95% confidence intervals were truncated if they 
were located outside the range of 0 to 1.
1The reference group was EDU=0 (degree or equivalent). 

Table 4. Causal mediation analysis results using ‘mediation’ 
(continuous outcomes)

Group1 ADE ACME PM

EDU=1 -0.613 (-1.019, -0.230) -0.058 (-0.101, -0.020) 0.085 (0.034, 0.230)

EDU=2 -0.891 (-1.329, -0.480) -0.152 (-0.243, -0.060) 0.144 (0.058, 0.270)

EDU=3 -2.033 (-2.511, -1.600) -0.120 (-0.189, -0.050) 0.056 (0.023, 0.090)

Values are presented as estimates (95% lower confidence interval).
ADE, average direct effect; ACME, average causal mediation effect; PM, 
proportion mediated.
1The reference group was EDU=0 (degree or equivalent). 
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CONCLUSION

This article presents the counterfactual framework of CMA. 
Specifically, it elaborates on the definitions of CDE, NDE, and 
NIE using nested counterfactuals and provides examples. Un-
like traditional mediation analysis based on linear models, CMA 
incorporates various types of variables and offers flexible mod-
eling. Furthermore, the CMA framework provides simple and 
clear interpretations for NDE and NIE estimates, regardless of 
the model’s complexity. These features are prominent advan-
tages of CMA over traditional mediation analysis. Concerning 
identification conditions, directed acyclic graphs show prom-
ise as a tool for researchers in confounder selection. Ultimately, 
the true value of CMA lies in its ability to prompt researchers 
to clarify the causal estimands they wish to examine in media-
tion analysis. This concept is well illustrated in the detailed 
comparisons of the 2 R packages, ‘medflex’ and ‘mediation,’ 
which can produce different estimates from the same data. In 
particular, practical analysis using these packages should be 
conducted with a careful and comprehensive understanding 
of the quantities they aim to provide. In addition to the 2 R 
packages, SAS and SPSS macros are available for mediation 
analysis. For readers interested in exploring the major techni-
cal differences among various CMA methods, we recommend 
referring to Starkopf et al. [33].

Indeed, the identification and interpretation of causal esti-
mands have been recognized as the primary focus in CMA. 
While not discussed in detail in this paper, important topics in-
clude the multiple mediator approach in the presence of con-
founders affected by treatments (i.e., intermediate confound-
ing), evaluating bounds under relaxed conditions [34,35], and 
targeting different definitions of NDE and NIE [9,36,37]. The 
advancement of CMA methodology in recent years allows us 
to unravel the meaning of causal estimands and the underly-
ing mechanisms in more complex research problems. In this 
regard, the appropriate application of CMA in research will not 
only aid in understanding causal mechanisms from a theoreti-
cal perspective but also contribute to establishing data-driven 
evidence for health policy in practice.
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