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FIXED-WIDTH PARTITIONS ACCORDING TO THE PARITY

OF THE EVEN PARTS

John M. Campbell

Abstract. A celebrated result in the study of integer partitions is the

identity due to Lehmer whereby the number of partitions of n with an
even number of even parts minus the number of partitions of n with an

odd number of even parts equals the number of partitions of n into dis-
tinct odd parts. Inspired by Lehmer’s identity, we prove explicit formulas

for evaluating generating functions for sequences that enumerate integer

partitions of fixed width with an even/odd number of even parts. We
introduce a technique for decomposing the even entries of a partition in

such a way so as to evaluate, using a finite sum over q-binomial coef-

ficients, the generating function for the sequence of partitions with an
even number of even parts of fixed, odd width, and similarly for the other

families of fixed-width partitions that we introduce.

1. Introduction

An integer partition, which may be simply referred to as a partition, may be
defined as an ordered tuple λ = (λ1, λ2, . . . , λℓ(λ)) of positive integers such that
λ1 ≥ λ2 ≥ · · · ≥ λℓ(λ). If λ1+λ2+ · · ·+λℓ(λ) = n, then λ may be referred to as
a partition of n, and this may be denoted as λ ⊢ n. The length of λ is defined
as the number ℓ(λ) of entries in the tuple λ, and the order of λ may be defined
as λ1 + λ2 + · · ·+ λℓ(λ). The entries or parts of a partition refer to expressions
of the following forms: λ1, λ2, . . ., λℓ(λ). The width of a partition λ may be
defined as the value of the initial entry λ1. In this article, we introduce results
on partitions related to the work of Lehmer [1, §8] and Gupta [5].

Let pe,e(n), po,e(n), and pd,o(n), respectively, denote the number of parti-
tions of n with an even number of even parts, the number of partitions of n
with an odd number of even parts, and the cardinality of the set of expres-
sions λ ⊢ n into distinct odd parts. Derrick Lehmer, at the 1974 International
Congress of Mathematicians, proved the identity

pe,e(n)− po,e(n) = pd,o(n)
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using generating functions [1, §8], and Hansraj Gupta offered a combinatorial
proof of this result [5]. In this article, we consider the natural combinatorial
problem of enumerating fixed-width partitions with an odd or even number of
even parts, using generating functions. Our work on fixed-width integer parti-
tions is partly inspired by [4], in which monotonicity properties for generating
functions for partitions with part sizes in a given set are studied; see also [2,3].

Partitions with even/odd numbers of even parts are interesting in part be-
cause there are many useful group-theoretic applications of partitions of this
form. To illustrate this idea, we remark that the number of partitions of n with
an even number of even parts is equal to the number of cycle types of conjugacy
classes of permutations in the alternating group An. Also, for n ̸= 6, there is a
canonical bijection between the orbits of An under the action of Aut(An) and
the set of all partitions of n with an even number of even parts [6].

Let pke,e(n) (resp. p
k
o,e(n)) denote the number of width-k partitions of n with

an even (resp. odd) number of even parts. We prove explicit formulas for
generating functions for integer sequences of the form

(1) (pke,e(n) : n ∈ N0)

and sequences of the form

(2) (pko,e(n) : n ∈ N0)

for arbitrary k. These formulas provide an efficient way to enumerate the
combinatorial objects with which we had defined pke,e(n) and pko,e(n). We also
use these formulas to determine identities relating such combinatorial objects
to other families of integer partitions, as in Corollary 3.4 below.

The integer sequences of the form
(
pke,e(n) : n ∈ N

)
for k ∈ {1, 2, 3, 4} agree,

up to offsets, with the following OEIS entries: A000012, A002265, A025767, and
A029002. The sequences for p1o,e(n), p

2
o,e(n), and p3o,e(n), respectively, agree, up

to offsets, with the all-zeroes sequence, A002265, and the OEIS entry A025767.
The sequences

(
pke,e(n) : k ∈ N

)
and

(
pko,e(n) : k ∈ N

)
for a parameter n seem

to alternate between the rows of the number triangles given as A026920 and
A026921 in the OEIS, but these number triangles are defined in a way that
is not equivalent to our definitions for pke,e(n) and pko,e(n), and it is unclear
as to how the given generating functions for A026920 and A026921 could be
used to obtain our results introduced in Section 3 below. The data provided in
the OEIS entries that we have cited suggest that the partitions used to define
pke,e(n) and pko,e(n) have not been studied previously.

2. A decomposition of the even entries of a partition

We recall that the q-shifted factorial is such that

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1)

for n ∈ N. In this section, we prove the following result.
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Lemma 2.1. The generating function
∑

n≥0 p
2m+1
e,e (n)xn is equal to

(3)

(
1 +

∑
λ<µ<···<η x

|λ|+|µ|+···+|η|
)
x2m+1

(x;x2)m+1(x4;x4)m
,

where the above sum is over chains of partitions λ < µ < · · · < η, where the
order relation < is such that given partitions α and β, α < β if and only if
each entry of β is strictly greater than each entry of α, and where a chain in
the above sum consists of length-2 partitions p with distinct even entries such
that the width of p is less than or equal to 2m.

Proof. To evaluate the generating function
∑

n≥0 p
2m+1
e,e (n)xn, we decompose,

in the following manner, the collection of even entries of odd-width partitions
with an even number of even entries. Let λ be such a partition of width 2m+1.
For i ∈ N, let λ(i) denote the number of entries of λ that are equal to i. We thus
have that λ(2) + λ(4) + · · ·+ λ(2m) is even. Now, let I = {i1 < i2 < · · · < iℓ}
be a subset of the index set {1, 2, . . . ,m} such that an index j ∈ {1, 2, . . . ,m}
is in I if and only if λ(2j) is odd. Since λ(2) + λ(4) + · · ·+ λ(2m) is even, we
may thus deduce that ℓ is even. Write ℓ = 2k. As above, for sequences s1 and
s2, write s1 < s2 if each entry of s2 is strictly greater than each entry of s1.
We thus have that the chain

(2i1, 2i2) < (2i3, 2i4) < · · · < (2ik−1, 2ik)

consists of length-2 partitions p with distinct even entries such that the width
of p1 is less than or equal to 2m, regardless of the parity of k.

Now, suppose that λ has an odd number of a1’s, an odd number of a2’s, and
so forth, and an odd number of a2ℓ’s, with a1 < a2 < · · · < a2ℓ, and where

(a2, a1) < (a4, a3) < · · · < (a2ℓ, a2ℓ−1)

is a chain of partitions of the form indicated in the Theorem under considera-
tion. A width-(2m + 1) partition λ ⊢ n with an even number of even entries
either: (1) Has an even number of twos, an even number of fours, and so forth,
or (2) May be constructed uniquely from a width-(2m+ 1) partition of n with
entries in {1, 2, 3, . . . , 2m + 1} with an even number of twos, an even number
of fours, and so forth, together with a strictly increasing chain of the form

(a2, a1) < (a4, a3) < · · · < (a2ℓ, a2ℓ−1)

as given above.
The expression

x2m+1

(1− x)(1− x3) · · · (1− x2m+1)(1− x4)(1− x8) · · · (1− x4m)

is the generating function for the sequence that enumerates width-(2m + 1)
partitions of n with entries in {1, 3, . . . , 2m+1}∪{4, 8, . . . , 4m}. For a partition
of this form, for any entries that are multiples of 4, we divide any such entry
into equal parts, so as to produce an even number of even entries, so that the
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Figure 1. An illustration of the decomposition of the even
entries of the partition

(
72, 63, 43, 3, 22, 1

)
.

numerator in (3) gives the required multiplicity according to our decomposition
of the even entries of a partition with an even number of even entries. □

Example 2.2. An illustration of a decomposition, based on our proof of
Lemma 2.1, of the even entries of a partition is given in Figure 1.

Example 2.3. Letting m = 4, we have that
∑

n≥0 p
9
e,e(n)x

n is equal to the
following:(

1 + x6 + x8 + 2x10 + x12 + x14 + x6+14
)
x9

(x;x2)5(x4;x4)4

= x9 + x10 + x11 + 2x12 + 3x13 + 4x14 + 6x15 + 8x16 + 12x17 + · · · .

So, for example, let us consider the coefficient of x14 in the above expansion.
This should be equal to p9e,e(14), i.e., the number of width-9 partitions of 14
with an even number of even parts, and we would expect that there should be
4 such partitions. If we examine the Ferrers diagrams presented in Figure 2,
then we find that our combinatorial interpretation of the coefficient of x14 in
the above expansion is correct.

Figure 2. Ferrers diagrams.
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3. Main results

Before evaluating the generating function
∑

n≥0 p
2m+1
e,e (n)xn and proving

this evaluation, we recall the definition of the q-binomial coefficient:(
n

m

)
q

=

(
qm+1; q

)
∞

(
q−m+n+1; q

)
∞

(q; q)∞ (qn+1; q)∞
=

m−1∏
i=0

1− qn−i

1− qi+1
.

Theorem 3.1. The generating function
∑

n≥0 p
2m+1
e,e (n)xn is equal to(

1 +
∑⌊m

2 ⌋
j=1 x2j(2j+1)

(
m
2j

)
x2

)
x2m+1

(x;x2)m+1(x4;x4)m

for all m ∈ N.

Proof. To evaluate the sum ∑
λ<µ<···<η

x|λ|+|µ|+···+|η|,

we evaluate sums of the following forms:∑
λ

x|λ|,
∑
λ<µ

x|λ|+|µ|, etc.

It is easily seen that:∑
λ

x|λ| =

m−1∑
i1=1

m∑
i2=i1+1

x2i1+2i2 ,

∑
λ<µ

x|λ|+|µ| =

m−1∑
i1=1

m∑
i2=i1+1

m−1∑
i3=i2+1

m∑
i4=i3+1

x2i1+2i2+2i3+2i4 ,

etc.

Let ps(x) denote the following polynomial expression, where m is understood
to be fixed:

m−1∑
i1=1

m∑
i2=i1+1

m−1∑
i3=i2+1

m∑
i4=i3+1

· · ·

m−1∑
i2s−1=i2s−2+1

m∑
i2s=i2s−1+1

x2i1+2i2+2i3+2i4+···+2i2s−1+2i2s .

From the above definition for ps(x) together with the definition for q-binomial
coefficients, it is easily seem, combinatorially or through the use of partial
sum-type operators, that

ps
(√

x
)
= xs(2s+1)

(
m

2s

)
x
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for all s, m, and x. Since
∑

n≥0 p
2m+1
e,e (n)xn equals(

1 +
∑

λ<µ<···<η x
|λ|+|µ|+···+|η|

)
x2m+1

(x;x2)m+1(x4;x4)m

according to Lemma 2.1, we may express this generating function as(
1 +

∑⌊m
2 ⌋

j=1 pj(x)
)
x2m+1

(x;x2)m+1(x4;x4)m
,

as desired. □

Example 3.2. Letting m = 2 with respect to Theorem 3.1, we have that∑
n≥0

p5e,e(n)x
n =

x5 + x11

(1− x) (1− x3) (1− x4) (1− x5) (1− x8)
,

and we thus have that the number of width-five even partitions of n is equal
to the number of partitions with parts in {1, 3, 4, 5, 8} and of order n − 5 or
n− 11.

With regard to our proof of Theorem 3.1, a very similar argument may be
used to prove the following result.

Theorem 3.3. The generating function
∑

n≥0 p
2m
o,e (n)x

n is equal to

(x− 1)x2m−1

(
4
∑⌊m

2 ⌋
j=1

(x4m+4)
j
(x−2m;x2)2j

(−1;x)j+1(−1;x2)j+1(x;x)j(x2;x4)j
+ 1

)
(
1
x ;x

2
)
m+1 (x4;x4)m

for all m ∈ N.

We may mimic, as below, our multisum construction involved above, in order
to evaluate the generating function for p2me,e (n), for n ∈ N0. By analogy with
the definition of the polynomial expression ps(x), define qs(x) as follows:

m−1∑
i1=1

m∑
i2=i1+1

m−1∑
i3=i2+1

m∑
i4=i3+1

· · ·
m−1∑

i2s−1=i2s−2+1

m∑
i2s=i2s−1+1

m∑
i2s+1=i2s+1

x2i1+2i2+2i3+2i4+···+2i2s−1+2i2s+2i2s+1 ,

noting that the upper parameter of the innermost sum is given asm, as opposed
to m− 1. By direct analogy with the proof of Theorem 3.1, we can show that∑

n≥0

p2me,e (n)x
n
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may be written as

x2m(x2 + x4 + · · ·+ x2m)(
x( 1

x ;x2)m+1

x−1

)
(x4;x4)m

+
x2m

∑⌊m−1
2 ⌋

j=1 qj(x)(
x( 1

x ;x2)m+1

x−1

)
(x4;x4)m

for arbitrary m ∈ N. We can similarly show that:

∑
n≥0

p2m+1
o,e (n)xn =

x2m+1(x2 + x4 + · · ·+ x2m)

(x;x2)m+1(x4;x4)m
+

x2m+1
∑⌊m−1

2 ⌋
j=1 qj(x)

(x;x2)m+1(x4;x4)m
.

The results given above may be used to construct simple proofs for identities
concerning fixed-width even/odd partitions.

Corollary 3.4. The number of width-three even partitions of order at most
n is equal to the number of partitions of width at most 4 whose order is in
{n− 3, n− 4}.

Proof. Letting m = 1 with respect to Theorem 3.1, we have that:∑
n≥0

p3e,e(n)x
n =

x3

(1− x) (1− x3) (1− x4)
.

Applying the partial sum operator 1
1−x to both sides of the above equality, we

have that:

1

1− x

∑
n≥0

p3e,e(n)x
n =

x3

(1− x)2 (1− x3) (1− x4)
.

Rewrite the above rational function as follows:

1

1− x

∑
n≥0

p3e,e(n)x
n =

x3 + x4

(1− x)(1− x2) (1− x3) (1− x4)
.

Corollary 3.4 follows immediately from the above equality. □

We leave it as an open problem to generalize our methods and results so as
to be applicable to fixed-width partitions such that the number of parts that
are congruent to z1 modulo z2 is congruent to z3 modulo z4, for fixed values z1,
z2, z3, and z4. Also, we leave it as an open problem to evaluate the following
bivariate generating functions:

∞∑
k=0

∞∑
n=0

pke,e(n)z
kqn and

∞∑
k=0

∞∑
n=0

pko,e(n)z
kqn.
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