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ON THE STRUCTURE OF CERTAIN SUBSET OF

FAREY SEQUENCE

Xing-Wang Jiang and Ya-Li Li

Abstract. Let Fn be the Farey sequence of order n. For S ⊆ Fn, let

Q(S) be the set of rational numbers x/y with x, y ∈ S, x ≤ y and y ̸= 0.
Recently, Wang found all subsets S of Fn with |S| = n + 1 for which

Q(S) ⊆ Fn. Motivated by this work, we try to determine the structure
of S ⊆ Fn such that |S| = n and Q(S) ⊆ Fn. In this paper, we determine

all sets S ⊆ Fn satisfying these conditions for n ∈ {p, 2p}, where p is

prime.

1. Introduction

For a positive integer n, let Fn denote the Farey sequence of order n, that
is, the set of irreducible fractions between 0 and 1 whose denominators do not
exceed n. For S ⊆ Fn, define

Q(S) =

{
x

y
: x, y ∈ S, x ≤ y, y ̸= 0

}
.

Recently, Wang [7] found all subsets S ⊆ Fn for which Q(S) = Fn.

Theorem 1.1 ([7, Theorem 3]). Suppose S ⊆ Fn and Q(S) = Fn. Then S
can only be one of the following two sets:

S =

{
0, 1,

1

2
, . . . ,

1

n

}
or S =

{
0, 1,

1

n
, . . . ,

n− 1

n

}
.

Wang [7] also proved the following results.

Theorem 1.2 ([7, Theorem 1]). If S ⊆ Fn and Q(S) ⊆ Fn, then S has at
most n+ 1 elements.
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Theorem 1.3 ([7, Theorem 4]). Suppose S ⊆ Fn, |S| = n+1 and Q(S) ⊆ Fn.
Then

S =

{
0, 1,

1

2
, . . . ,

1

n

}
or S =

{
0, 1,

1

n
, . . . ,

n− 1

n

}
except for n = 4, where we have an additional set S =

{
0, 1, 1

2 ,
1
3 ,

2
3

}
.

In 1970, Graham [4] proposed the following conjecture.

Conjecture 1.4. Let a1, a2, . . . , an be distinct positive integers. Then

max
i ̸=j

ai
(ai, aj)

≥ n.

Vélez [6] pointed out that Graham also made the following stronger conjec-
ture.

Conjecture 1.5. Let Mn = [1, 2, . . . , n] and a1, a2, . . . , an be distinct positive
integers. If

(a1, a2, . . . , an) = 1 and max
i ̸=j

ai
(ai, aj)

= n,

then {a1, a2, . . . , an} can only be {1, 2, . . . , n} or
{

Mn

n , Mn

n−1 , . . . ,
Mn

1

}
except for

n = 4, where we have the additional sequence {2, 3, 4, 6}.

These conjectures have been confirmed by Balasubramanian and Soundara-
rajan [1] based on deep analytical methods. Wang [7] showed that Theorems
1.2 and 1.3 are equivalent to Conjectures 1.4 and 1.5, respectively. In Wang’s
proofs of Theorems 1.2 and 1.3, Conjectures 1.4 and 1.5 are necessary. But there
are potentially other proofs which do not need the conjectures. Wang [7] asked
whether one can prove Theorems 1.2 and 1.3 directly and thus providing new
proofs for Graham’s conjectures. For more results about Graham’s conjectures,
see [2, 3, 5, 8, 9].

By Theorem 1.2, we know that n+1 is critical. Motivated by Theorem 1.3,
we study the structure of S ⊆ Fn with |S| = n for whichQ(S) ⊆ Fn. Obviously,

if S =
{
0, 1, 2

3 ,
2
4 . . . ,

2
n

}
or S =

{
0, 1, 1

n−1 , . . . ,
n−2
n−1

}
or S is a subset of the sets

in Theorem 1.3, then Q(S) ⊆ Fn. We wonder whether there is other desired
set S ⊆ Fn. In this paper, we determine the structure of S ⊆ Fn with |S| = n
and Q(S) ⊆ Fn for n ∈ {p, 2p}, where p is prime. For other n, we attempted
to figure out the structure of the desired set S but without success. In this
paper, the following results are proved.

Theorem 1.6. Let n ∈ {p, 2p}, where p is prime. Let S be a subset of Fn

with |S| = n. Then Q(S) ⊆ Fn if and only if S satisfies one of the following
conditions:

(i) S =
{
0, 1, 2

3 ,
2
4 . . . ,

2
n

}
,

(ii) S ⊆
{
0, 1, 1

2 ,
1
3 , . . . ,

1
n

}
,

(iii) S ⊆
{
0, 1, 1

n ,
2
n , . . . ,

n−1
n

}
,
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(iv) S =
{
0, 1, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1

}
except for n ∈ {4, 5, 6, 10}. For n = 4, there are two additional sets S ={
0, 1

2 ,
1
3 ,

2
3

}
and S =

{
1, 1

2 ,
1
3 ,

2
3

}
. For n = 5, there are two additional sets

S =
{
0, 1, 1

5 ,
2
5 ,

1
2

}
and S =

{
0, 1, 1

2 ,
1
3 ,

2
3

}
. For n = 6, there is an additional

set S =
{
0, 1, 1

2 ,
1
3 ,

1
5 ,

2
5

}
. For n = 10, there are two additional sets S ={

0, 1, 1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
9 ,

2
3 ,

2
9

}
and S =

{
0, 1, 1

6 ,
1
2 ,

1
9 ,

2
9 ,

1
3 ,

4
9 ,

5
9 ,

2
3

}
.

The proof of Theorem 1.6 will be divided into two parts according to n = p
and n = 2p, which we will give in Section 2 and Section 3, respectively. In
the following, we denote F̄n the set of all nonnegative fractions with both
denominator and numerator not more than n.

2. Proof of Theorem 1.6 for n = p

It is easy to verify that the sufficiency is true. Next, we prove the necessity.
If 0 /∈ S, then S ∪ {0} ⊆ Fp and Q(S ∪ {0}) ⊆ Fp. By Theorem 1.3, we have

S ∪ {0} =
{
0, 1, 1

2 , . . . ,
1
p

}
or S ∪ {0} =

{
0, 1, 1

p , . . . ,
p−1
p

}
. Thus,

S =
{
1,

1

2
, . . . ,

1

p

}
or S =

{
1,

1

p
, . . . ,

p− 1

p

}
.

Similarly, we can get that if 1 /∈ S, then

S =
{
0,

1

2
, . . . ,

1

p

}
or S =

{
0,

1

p
, . . . ,

p− 1

p

}
.

In the following, we assume that {0, 1} ⊆ S. Clearly, if p = 2, then S = {0, 1}
which satisfies the condition (i). Now, we suppose that p ≥ 3. Let

S =

{
0, 1,

x1

p
,
x2

p
, . . . ,

xr

p
,
y1
z1

,
y2
z2

, . . . ,
ys
zs

}
, r + s = p− 2,

where the fractions are irreducible and (p, zi) = 1 (1 ≤ i ≤ s). Clearly, S ⊆{
0, 1, 1

p , . . . ,
p−1
p

}
when s = 0. If r = 0, then S ⊆ Fp−1 and Q(S) ⊆ Fp−1. By

Theorem 1.3,

S =

{
0, 1,

1

2
,
1

3
, . . . ,

1

p− 1

}
or S =

{
0, 1,

1

p− 1
,

2

p− 1
, . . . ,

p− 2

p− 1

}
except for p = 5, where we have an additional set S =

{
0, 1, 1

2 ,
1
3 ,

2
3

}
. Now, we

consider the case r ≥ 1, s ≥ 1. Since xi

p

/
yj

zj
=

xizj
pyj

∈ F̄p, we have

(2.1) yj | xi,
xizj
yj

≤ p− 1 (1 ≤ i ≤ r, 1 ≤ j ≤ s).

Case 1. (x1, x2, . . . , xr) = 1. By (2.1), we have yj | (x1, x2, . . . , xr) which
implies yj = 1 for any 1 ≤ j ≤ s. And now, all zj ’s are distinct and greater
than 1. It follows from (2.1) that

(2.2) r(s+ 1) ≤ max
i∈[1,r]

xi · max
j∈[1,s]

zj ≤ p− 1 = r + s+ 1.
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Thus, r ≤ 2. If r = 1, then x1 = 1 by (x1, x2, . . . , xr) = 1. Therefore,

S ⊆
{
0, 1, 1

2 , . . . ,
1
p

}
. If r = 2, then by (2.2), we have s = 1 and p = 5.

Furthermore, by (2.2), we can get that {x1, x2} = {1, 2} and z1 = 2. Therefore,
S =

{
0, 1, 1

5 ,
2
5 ,

1
2

}
.

Case 2. (x1, x2, . . . , xr) > 1. Without loss of generality, we may assume
xr = max

i∈[1,r]
xi. Then xr ≥ 2r. Let z′j =

xrzj
yj

(1 ≤ j ≤ s). Then S can be

rewritten as

S =

{
0, 1,

x1

p
,
x2

p
, . . . ,

xr

p
,
xr

z′1
,
xr

z′2
, . . . ,

xr

z′s

}
.

Since S ⊆ Fp, we have xr < z′j and z′j ’s are distinct. By (2.1),

2r + s ≤ xr + s ≤ max
j∈[1,s]

z′j ≤ p− 1 = r + s+ 1.

It follows that r = 1, x1 = 2 and s = p− 3. Therefore, S =
{
0, 1, 2

3 ,
2
4 . . . ,

2
p

}
.

This completes the proof for the case n = p.

3. Proof of Theorem 1.6 for n = 2p

In this section, we prove Theorem 1.6 holds for n = 2p. Firstly, we give
some lemmas which will be used in the the following proof.

Lemma 3.1. Let p be odd prime and

S =

{
0, 1,

a1
2p

,
a2
2p

, . . . ,
ar
2p

,
b1
p
, . . . ,

bt
p
,

1

2u1
, . . . ,

1

2us
,
1

v1
, . . . ,

1

vk

}
be a subset of F2p with r+s+t+k = 2p−2, where these fractions are irreducible
and p ∤ ui (1 ≤ i ≤ s), (vj , 2p) = 1 (1 ≤ j ≤ k). If Q(S) ⊆ F2p, then

S ⊆
{
0, 1,

1

2
, . . . ,

1

2p

}
or S ⊆

{
0, 1,

1

2p
, . . . ,

2p− 1

2p

}
.

Proof. We may assume that a1 < · · · < ar, b1 < · · · < bt, u1 < · · · < us and
v1 < · · · < vk. Clearly, r, s, t ≤ p − 1 and k ≤ p − 2. We have ar ≥ 2r − 1
if r ≥ 1 and vk ≥ 2k + 1 if k ≥ 1. Moreover, by ai ̸= p and vi ̸= p we have
ar ≥ 2r + 1 for r ≥ p+1

2 and vk ≥ 2k + 3 for k ≥ p−1
2 .

Case 1. r ≥ 1. We divide into two subcases s+ t ≤ p− 1 and s+ t ≥ p.
Subcase 1.1. s+ t ≤ p− 1. By r+ s+ t+k = 2p− 2 we have r+k ≥ p− 1.
Subcase 1.1.1. k ≥ 1. By ar

2p/
1
vk

= arvk
2p ∈ F̄2p,

(2r − 1)(2k + 1) ≤ arvk ≤ 2p− 1 ≤ 2r + 2k + 1.

This implies r = 1 and k = p − 2. Then we have vp−2 = 2p − 1 and a1 = 1.

If t = 0, then S ⊆
{
0, 1, 1

2 , . . . ,
1
2p

}
. If t ≥ 1, then it follows from bt

p /
1

vp−2
=

bt(2p−1)
p ∈ F̄2p that bt(2p − 1) ≤ 2p − 1. Thus, t = 1 and b1 = 1. Therefore,

S ⊆
{
0, 1, 1

2 , . . . ,
1
2p

}
.
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Subcase 1.1.2. k = 0. Note that r + k ≥ p − 1 and r ≤ p − 1. Then in
this case, r = p − 1 and s + t = p − 1. We have ap−1 = 2p − 1. If s = 0,

then S ⊆
{
0, 1, 1

2p , . . . ,
2p−1
2p

}
. If s ≥ 1, then

ap−1

2p / 1
2us

= (2p−1)us

p ∈ F̄2p

implies (2p − 1)us ≤ 2p − 1, and so s = 1 and u1 = 1. Therefore, S ⊆{
0, 1, 1

2p , . . . ,
2p−1
2p

}
.

Subcase 1.2. s + t ≥ p. Noting that s, t ≤ p − 1, we have s, t ≥ 1. By
bt
p /

1
2us

= 2usbt
p ∈ F̄2p,

(3.1) st ≤ usbt ≤ p− 1.

If s, t ≥ 2, then s+ t ≤ st ≤ p− 1, a contradiction. Hence, s = 1 or t = 1, and
so {s, t} = {1, p− 1}.

If s = 1, t = p − 1, then u1 = 1 and bp−1 = p − 1 by (3.1). When k ≥ 1,

we can deduce from
bp−1

p / 1
vk

= (p−1)vk
p ∈ F̄2p that (p − 1)vk ≤ 2p − 1. Thus,

vk ≤ 2 which is impossible. Therefore, k = 0 and S ⊆
{
0, 1, 1

2p ,
2
2p . . . ,

2p−1
2p

}
.

If s = p − 1, t = 1, then up−1 = p − 1 and b1 = 1 by (3.1). Since r ≥ 1, it

follows from ar

2p/
1

2up−1
= (p−1)ar

p ∈ F̄2p that (p − 1)ar ≤ 2p − 1. By 2 ∤ ar, we

have r = 1 and a1 = 1. Therefore, S ⊆
{
0, 1, 1

2 ,
1
3 . . . ,

1
2p

}
.

Case 2. r = 0. It is clear that Q(S) ⊆ F2p−1. By Theorem 1.3, we have

S =
{
0, 1, 1

2 ,
1
3 , . . . ,

1
2p−1

}
or S =

{
0, 1, 1

2p−1 ,
2

2p−1 , . . . ,
2p−2
2p−1

}
. The latter

form is impossible since 2
2p−1 /∈ S. Therefore, S =

{
0, 1, 1

2 ,
1
3 , . . . ,

1
2p−1

}
⊆{

0, 1, 1
2 ,

1
3 . . . ,

1
2p

}
. This completes the proof. □

Lemma 3.2. Let p be odd prime and

S =
{
0, 1,

p

b
,
X1

2b
,
X2

2b
, . . . ,

Xk

2b
,
Y1

b
,
Y2

b
, . . . ,

Yl

b

}
be a subset of F2p with k+ l = 2p− 3, where p < b ≤ 2p− 1, (Xi, 2p) = 1 (1 ≤
i ≤ k) and (Yj , p) = 1 (1 ≤ j ≤ l). If Q(S) ⊆ F2p, then

S =
{
0, 1,

1

2p− 1
,

2

2p− 1
, . . . ,

2p− 2

2p− 1

}
except for p ∈ {3, 5}. There is an additional set S =

{
0, 1, 1

2 ,
1
3 ,

1
5 ,

2
5

}
for p = 3

and an additional set S =
{
0, 1, 1

6 ,
1
2 ,

1
9 ,

2
9 ,

1
3 ,

4
9 ,

5
9 ,

2
3

}
for p = 5.

Proof. If k = 0, then l = 2p−3. Since p /∈ {Yj : 1 ≤ j ≤ l} and Yj < b ≤ 2p−1,
we have {Yj : 1 ≤ j ≤ l} = {1, 2, . . . , 2p− 2} \ {p}. Thus, b = 2p− 1 and

S =
{
0, 1,

1

2p− 1
,

2

2p− 1
, . . . ,

2p− 2

2p− 1

}
.

Now, we deal with the case k > 0. By p
b /

Xi

2b = 2p
Xi

∈ F̄2p and (Xi, 2p) = 1, we

have Xi ≤ 2p− 1. Since b > p, we have X
2b /∈ S for integers X with (X, 2b) = 1.
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It follows that

(3.2)
1

2b
/∈ S,

p

2b
/∈ S

and

(3.3)
b± 1

2b
/∈ S (2 | b), b± 2

2b
/∈ S (2 ∤ b).

Firstly, we suppose that p ≥ 7. Let l1 be the number of Yj with p < Yj < b.
When b is even, we have b+ 1 ∈ (p, 2p− 1]. By (3.2) and (3.3),{X1

2b
,
X2

2b
, . . . ,

Xk

2b

}
⊆

{ 1

2b
,
3

2b
, . . . ,

2p− 1

2b

}
\
{ 1

2b
,
p

2b
,
b+ 1

2b

}
.

Hence, k ≤ p−3. Similarly, we can get that k ≤ p−3 when b is odd. It follows
from k + l = 2p− 3 that l ≥ p, which indicates that l1 ≥ 1 and b ≥ p+ 2. Let

αj be the integer such that 2αj ||Yj . For p < Yj < b, by Xi

2b /
Yj

b = Xi

2Yj
∈ F̄2p, we

have (Xi, Yj) > 1. From this, we get that, for p < Yj < b,

(3.4)
Yj/2

αj ± 2

2b
/∈ S

since (
Yj

2αj ± 2, 2Yj) = 1. And if 3
2b ∈ S, then

(3.5) 3 | Yj (p < Yj < b).

By 2 ∤ Xi, Yj could not be of the form 2α. Let

A =
{Yj/2

αj + 2

2b
: 2 | Yj , p < Yj < b

}
, B =

{Yj + 2

2b
: 2 ∤ Yj , p < Yj < b

}
.

Hence, 5
2b ≤ minA ≤ maxA ≤ p

2b ,
p+4
2b ≤ minB ≤ maxB ≤ 2p−1

2b , and so
|A ∪B| = l1. Let

S′ =
{
0, 1,

p

b
,
3

2b
,
5

2b
, . . . ,

2p− 1

2b
,
Y1

b
,
Y2

b
, . . . ,

Yl

b

}
\ (A ∪B).

Then S ⊆ S′ and |S′| = 3+l+(p−1−l1) ≤ 3+(p−1+l1)+(p−1−l1) = 2p+1.
The claim below will be usually used in the following proof.

Claim 1. Let x be an odd integer with 3 ≤ x ≤ 2p − 1. If x
2b /∈ S and

x
2b /∈ A ∪B, then

S = S′ \
{ x

2b

}
.

Proof of Claim 1. By x
2b /∈ S and x

2b /∈ A∪B, we have S ⊆ S′\
{

x
2b

}
. It follows

from

2p = |S| ≤ |S′ \
{ x

2b

}
| = |S′| − 1 ≤ 2p

that S = S′ \ { x
2b}. □
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We return to the proof of Lemma 3.2 and divide into two cases according
2 | b and 2 ∤ b.

Case 1. 2 | b.
In this case, p + 3 ≤ b ≤ 2p − 2. When |B| = 0, by b±1

2b /∈ A and (3.3), we

have S ⊆ S′ \{ b±1
2b }, which implies that |S| ≤ |S′|−2 ≤ 2p−1, a contradiction.

Hence, |B| > 0. Without loss of generality, we may assume that p < Yj < b for
j = 1, 2, . . . , l1.

If b+1
2b /∈ B, then S = S′ \ { b+1

2b } by Claim 1. This indicates that 3
2b ∈ S,

p
2b ∈ A and b−1

2b ∈ B. By the definitions of A and B, we know that there are
two integers 1 ≤ j′, j′′ ≤ l1 such that Yj′ = 2p− 4, Yj′′ = b− 3. From 2 | b and
Yj′ < b, we get that b = 2p−2, and so Yj′′ = 2p−5. However, by (3.5), we have

3 | 2p − 4 and 3 | 2p − 5, which is impossible. Hence, b+1
2b ∈ B. Similarly, we

can prove that b−1
2b ∈ B. By the definitions of A and B, there exist two integers

1 ≤ j1, j2 ≤ l1 such that Yj1 = b − 1, Yj2 = b − 3. From above argument, we
know that 3

2b /∈ S. Let Yj0 be the largest odd integer with 1 ≤ j0 ≤ l1 such

that
Yj0

b ∈ S,
Yj0

−2

b /∈ S. Define Yj0 = p + 2 if such integer does not exist.

Then we have
Yj0

2b /∈ B. By
{

b−1
b , b−3

b

}
⊆ S, we know

Yj0
+2

b ∈ S. It follows

from (3.4) that
Yj0

2b /∈ S. Hence, S ⊆ S′ \ { 3
2b ,

Yj0

2b }. So |S| ≤ |S′| − 2 ≤ 2p− 1,
a contradiction.

Case 2. 2 ∤ b.
In this case, p + 2 ≤ b ≤ 2p − 1. Firstly, we deal with the subcase |B| = 0.

If b = p + 2, then p < b + 2 < b + 4 ≤ 2p − 1 by p ≥ 7. It follows from
b+2
2b /∈ S and b+4

2b /∈ S that S ⊆ S′ \
{

b+2
2b , b+4

2b

}
. Hence, |S| ≤ |S′|− 2 ≤ 2p− 1,

a contradiction. If b = 2p−1, then p < b−4 < b−2 ≤ 2p−1. If p+2 < b < 2p−1,
then p < b − 2 < b + 2 ≤ 2p − 1. In both cases, by similar argument, we can
get that |S| ≤ |S′| − 2 ≤ 2p− 1, a contradiction.

Now, we deal with the subcase |B| > 0. At this point, p+ 4 ≤ b ≤ 2p− 1.
For p+ 4 ≤ b ≤ 2p− 3, we have b+2

2b /∈ B. By (3.3) and Claim 1, we obtain

S = S′ \ { b+2
2b }, which indicates that 3

2b ∈ S, p
2b ∈ A and b−2

2b ∈ B. From the
definition of A, there exists an integer 1 ≤ j′ ≤ l1 such that Yj′ = 2p− 4. And

now, b = 2p − 3 and 3 | 2p − 4 = b − 1. Since 3 ∤ b − 2, we have b−2
b /∈ S

and (b−2)+2
2b = 1

2 /∈ B. Hence, 1
2 ∈ S. However, 1

2/
2p−4
2p−3 = 2p−3

2(2p−4) /∈ F̄2p, a

contradiction.
For b = 2p − 1, we will prove that 2p−5

2(2p−1) ∈ B and p
2(2p−1) ∈ A. Clearly,

2p−5 > p and 2p−5
2(2p−1) /∈ S. If 2p−5

2(2p−1) /∈ B, then S = S′ \{ 2p−5
2(2p−1)} by Claim 1,

which indicates that 3
2(2p−1) ∈ S, p

2(2p−1) ∈ A and 2p−3
2(2p−1) ∈ B. Hence, there

are two integers 1 ≤ j′, j′′ ≤ l1 such that Yj′ = 2p−4 and Yj′′ = 2p−5. By (3.5),

3 | 2p− 4 and 3 | 2p− 5 which is impossible. Therefore, 2p−5
2(2p−1) ∈ B. Similarly,

we can get that p
2(2p−1) ∈ A. By the definitions of A and B, Yj1 = 2p− 4 and
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Yj2 = 2p− 7 for some 1 ≤ j1, j2 ≤ l1. From p < Yj2 = 2p− 7, we obtain p > 7,
that is p ≥ 11.

It is easy to see that 2p − 9 > p and 2p−9
2(2p−1) /∈ S. If 2p−9

2(2p−1) /∈ B, then by

Claim 1, we have S = S′ \ { 2p−9
2(2p−1)}, which indicates that 3

2(2p−1) ∈ S and
2p−3

2(2p−1) ∈ B. Hence, there is an integer 1 ≤ j′′′ ≤ l1 such that Yj′′′ = 2p − 5.

By (3.5), 3 | 2p− 4 and 3 | 2p− 5, which is impossible. Therefore, 2p−9
2(2p−1) ∈ B.

Similarly, we have 2p−3
2(2p−1) ∈ B. By the definition of B, there are two integers

1 ≤ j3, j4 ≤ l1 such that Yj3 = 2p−5 and Yj4 = 2p−11. And now, 3
2(2p−1) /∈ S.

Since
1

2
/
2p− 5

2p− 1
=

2p− 1

2(2p− 5)
/∈ F̄2p,

we have 1
2 = 2p−1

2(2p−1) /∈ S. Hence, 2p−1
2(2p−1) ∈ B, which implies that Yj5 = 2p− 3

for some integer 1 ≤ j5 ≤ l1. Let Yj0 be the largest odd integer with 1 ≤ j0 ≤ l1

such that
Yj0

2p−1 ∈ S,
Yj0

−2

2p−1 /∈ S. Define Yj0 = p+2 if such integer does not exist.

By similar discussion to Case 1, we can get that
Yj0

2(2p−1) /∈ S and
Yj0

2(2p−1) /∈ B.

Hence, S ⊆ S′ \ { 3
2(2p−1) ,

Yj0

2(2p−1)}. So |S| ≤ |S′| − 2 ≤ 2p− 1, a contradiction.

Now, we suppose that p ∈ {3, 5}. Note that Xi ≤ 2p − 1 and (Xi, 2p) = 1
for 1 ≤ i ≤ k. For p = 3, by 3 = p < b ≤ 2p − 1 = 5, we have b ∈ {4, 5}. If
b = 4, then all of 1

8 ,
3
8 and 5

8 do not belong to S, contradictory with k > 0.

Hence, b = 5. By 1
10 /∈ S, 3

10 /∈ S and k > 0, we have 1
2 = 5

10 ∈ S. It follows

from 1
2/

4
5 = 5

8 /∈ F6 that 4
5 /∈ S. Thus, S ⊆ {0, 1, 3

5 ,
1
2 ,

1
5 ,

2
5}. |S| = 2p = 6

implies that S = {0, 1, 3
5 ,

1
2 ,

1
5 ,

2
5}. For p = 5, we have b ∈ {6, 7, 8, 9}. If

b = 6, then S ⊆ {0, 1, 3
12 ,

9
12 ,

1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6} since all of 1

12 ,
5
12 and 7

12 do not
belong to S. Hence, |S| ≤ 9 < 10 = 2p, a contradiction. If b = 7, then
by 1

14 ,
3
14 ,

5
14 and 9

14 not belonging to S, we have S ⊆ {0, 1, 7
14 ,

1
7 ,

2
7 , . . . ,

6
7}.

Hence |S| ≤ 9 < 10 = 2p, a contradiction. If b = 8, then 2i−1
16 /∈ S for

i ∈ [1, 5], contradictory with k > 0. If b = 9, then by k > 0 and 2i−1
18 /∈ S (i =

1, 3, 4), we have 3
18 ∈ S or 1

2 = 9
18 ∈ S. By (3.5), we have 7

9 /∈ S, 8
9 /∈ S

when 3
18 ∈ S. If 1

2 ∈ S, then by 1
2/

j
9 = 9

2j /∈ F̄10 for j = 7, 8, we have
7
9 /∈ S, 8

9 /∈ S. Hence, S ⊆ {0, 1, 1
6 ,

1
2 ,

1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9}. |S| = 10 implies that

S = {0, 1, 1
6 ,

1
2 ,

1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9}. This completes the proof. □

Lemma 3.3. Let S be a subset of F2p with |S| = 2p and Q(S) ⊆ F2p, where p
is odd prime.

(1) If S contains no fractions whose denominators are 2p or p, then

S =

{
0, 1,

1

2p− 1
,

2

2p− 1
. . . ,

2p− 2

2p− 1

}
except for p ∈ {3, 5}. There is an additional set S =

{
0, 1, 1

2 ,
1
3 ,

1
5 ,

2
5

}
for p = 3

and an additional set S =
{
0, 1, 1

6 ,
1
2 ,

1
9 ,

2
9 ,

1
3 ,

4
9 ,

5
9 ,

2
3

}
for p = 5.
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(2) If S contains fractions whose denominators are 2p and also contains
fractions whose denominators are p, then

S ⊆
{
0, 1,

1

2
,
1

3
, . . . ,

1

2p

}
or S ⊆

{
0, 1,

1

2p
,
2

2p
, . . . ,

2p− 1

2p

}
.

Proof. (1) It is easy to see that S ⊆ F2p−1. If S contains no fractions whose nu-
merators are p, then Q(S) ⊆ F2p−1. By Theorem 1.3, we have S =

{
0, 1, 1

2 , . . . ,
1

2p−1

}
or S =

{
0, 1, 1

2p−1 , . . . ,
2p−2
2p−1

}
. Both are impossible since 1

p /∈ S and
p

2p−1 /∈ S. If S contains fractions whose numerators are p, then we may assume

that

S =

{
0, 1,

p

b1
, . . . ,

p

bt
,
x1

y1
, . . . ,

xs

ys

}
,

where the fractions are irreducible, b1 < b2 < · · · < bt, (xiyi, p) = 1 (1 ≤ i ≤ s)
and 2 + t + s = 2p. Since p

bi
/
xj

yj
=

pyj

bixj
∈ F̄2p, we have yj | bi or yj

2 | bi. Let

d = (b1, . . . , bt). Then

yj | d or
yj
2

| d (yj ∤ d).

We may assume that yi

2 | d and yi ∤ d for 1 ≤ i ≤ k and yk+j | d for 1 ≤ j ≤ l,
where k + l = s. Let

Xi =
xid

yi/2
(1 ≤ i ≤ k), Yj =

xk+jd

yk+j
(1 ≤ j ≤ l).

Then S can be rewritten as

S =

{
0, 1,

p

b1
, . . . ,

p

bt
,
X1

2d
, . . . ,

Xk

2d
,
Y1

d
, . . . ,

Yl

d

}
,

where (Xi, 2p) = 1, (Yj , p) = 1 and 2 + t+ k + l = 2p.
If t ≥ 2, by td ≤ bt ≤ 2p − 1, we have d ≤ p − 1. Since bi > p (1 ≤ i ≤ t),

we have bi ≥ (i + 1)d. It follows that t ≤ ⌊ 2p−1
d ⌋ − 1. By p < bi ≤ 2p − 1, we

can get that

(3.6) t ≤ min
{
p− 1,

⌊2p− 1

d

⌋
− 1

}
.

If d = p− 1, then t ≤ 1, a contradiction. So d ≤ p− 2. It is clear that Xi < 2d
and Yj < d. Hence,

|S| ≤ 2 + t+ d+ d− 1 = t+ 2d+ 1.

When d = 1, it follows from (3.6) that |S| ≤ p+2 < 2p, a contradiction. Hence,
d ≥ 2. And now, p ≥ 5 and t ≤ ⌊ 2p−1

d ⌋ − 1. By 2 ≤ d ≤ p− 2,

2p = |S| ≤
⌊2p− 1

d

⌋
+2d ≤ max

2≤d≤p−2

{⌊2p− 1

d

⌋
+2d

}
≤ max{p+3, 2p−1} < 2p,

a contradiction.
If t = 1, we may write b1 = b. Then d = b. By Lemma 3.2, we know the

result holds.
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(2) Similar to the proof of Theorem 1.6, we have S =
{
1, 1

2 , . . . ,
1
2p

}
or S ={

1, 1
2p , . . . ,

2p−1
2p

}
if 0 /∈ S and S =

{
0, 1

2 , . . . ,
1
2p

}
or S =

{
0, 1

2p , . . . ,
2p−1
2p

}
if

1 /∈ S. Now, we assume that {0, 1} ⊆ S. Let

S =

{
0, 1,

a1
2p

,
a2
2p

, . . . ,
ar
2p

,
b1
p
, . . . ,

bt
p
,
x1

2u1
, . . . ,

xs

2us
,
y1
v1

, . . . ,
yk
vk

}
with r+ s+ t+ k = 2p− 2 and r, t ≥ 1, where the fractions are irreducible and

(ui, p) = 1 (1 ≤ i ≤ s), (vj , 2p) = 1 (1 ≤ j ≤ k). Since bi
p /

xj

2uj
=

2ujbi
pxj

∈ F̄2p,

we have

(3.7) xj | bi,
2ujbi
xj

≤ 2p− 2 (1 ≤ i ≤ t, 1 ≤ j ≤ s).

Similarly, we can obtain that xj | ai (1 ≤ i ≤ r, 1 ≤ j ≤ s),

(3.8) yj | ai, 2 ∤ yj ,
aivj
yj

≤ 2p− 1 (1 ≤ i ≤ r, 1 ≤ j ≤ k)

and

(3.9) yj | bi,
bivj
yj

≤ 2p− 1 (1 ≤ i ≤ t, 1 ≤ j ≤ k).

If (a1, a2, . . . , ar) = 1 or (b1, b2, . . . , bt) = 1, then xi = 1 (1 ≤ i ≤ s) and

yj = 1 (1 ≤ j ≤ k). By Lemma 3.1, we have S ⊆
{
0, 1, 1

2 , . . . ,
1
2p

}
or S ⊆{

0, 1, 1
2p , . . . ,

2p−1
2p

}
. Now, we assume (a1, a2, . . . , ar) > 1 and (b1, b2, . . . , bt) >

1. We will deduce a contradiction.
Without loss of generality, we may assume that a1 < · · · < ar and b1 <

· · · < bt. Since (a1, a2, . . . , ar) ≥ 3, we have 3(2r − 1) ≤ ar ≤ 2p − 1 and so

r ≤ p+1
3 . Let v′i =

viar

yi
and v′′i = vibt

yi
for i ∈ [1, k] and u′′

j =
2ujbt
xj

for j ∈ [1, s].

Then S can be rewritten as both

S =

{
0, 1,

a1
2p

,
a2
2p

, . . . ,
ar
2p

,
b1
p
, . . . ,

bt
p
,
x1

2u1
, . . . ,

xs

2us
,
ar
v′1

, . . . ,
ar
v′k

}
and

S =

{
0, 1,

a1
2p

,
a2
2p

, . . . ,
ar
2p

,
b1
p
, . . . ,

bt
p
,
bt
u′′
1

, . . . ,
bt
u′′
s

,
bt
v′′1

, . . . ,
bt
v′′k

}
.

By S ⊆ F2p, all of v
′
i’s are distinct and larger than ar, all of u

′′
i ’s and v′′j ’s are

distinct and larger than bt. If 2 | bt, then 2 | v′′i since 2 ∤ yi. By (3.7), (3.9) and
2 | u′′

j we have

2t+ 2s+ 2k ≤ bt + 2s+ 2k ≤ max({v′′i : i ∈ [1, k]} ∪ {u′′
j : j ∈ [1, s]}) ≤ 2p− 2.

This implies that t+ s+ k ≤ p− 1, and so r ≥ p− 1, contradictory to r ≤ p+1
3 .

Hence, 2 ∤ bt and 2 ∤ v′′i . From (b1, b2, . . . , bt) > 1 we have bt ≥ 3t. Since

3t+1+2(s−1) ≤ bt+1+2(s−1) ≤ max{u′′
i : 1 ≤ i ≤ s} ≤ 2p−2 = r+s+t+k,
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we have

(3.10) 2t+ s ≤ r + k + 1.

It follows from 2 ∤ v′i and (3.8) that

3r + 2k ≤ ar + 2k ≤ max{v′i : 1 ≤ i ≤ k} ≤ 2p− 1 = r + s+ t+ k + 1,

and so

(3.11) 2r + k ≤ s+ t+ 1.

The inequalities (3.10) and (3.11) give us r + t ≤ 2. Hence, r = t = 1 and
b1 ≥ 3. Note that r + s+ t+ k = 2p− 2. By (3.10) and (3.11), we can obtain
that s = k = p−2. Therefore, {v′′1 , v′′2 , . . . , v′′k} = {3, 5, . . . , 2p−1}\{p}, which
is impossible since b1

3 /∈ S. This completes the proof. □

Now, we give the proof of Theorem 1.6 for the case n = 2p.

Proof of Theorem 1.6 for n = 2p. It is easy to verify that the sufficiency is true.
Next, we prove the necessity. Firstly, we deal with the case p = 2. Since 1

3/
3
4 =

4
9 /∈ F4,

1
4/

2
3 = 3

8 /∈ F̄4 and 2
3/

3
4 = 8

9 /∈ F̄4, S can not contain both x and y,

where (x, y) ∈ {( 13 ,
3
4 ), (

1
4 ,

2
3 ), (

2
3 ,

3
4 )}. Hence, if 2

3 ∈ S, then S ⊆ {0, 1, 1
3 ,

1
2 ,

2
3}.

If 1
3 ∈ S, then S ⊆ {0, 1, 1

2 ,
1
3 ,

2
3} or S ⊆ {0, 1, 1

2 ,
1
3 ,

1
4}. If neither 1

3 nor 2
3

belong to S, then S ⊆ {0, 1, 1
2 ,

1
4 ,

3
4}. Therefore, Theorem 1.6 holds for n = 4.

Now, we suppose that p ≥ 3.
By Lemma 3.3, we just need to consider the following two cases:
(1) S contains fractions whose denominators are 2p but no fraction whose

denominator is p;
(2) S contains fractions whose denominators are p but no fraction whose

denominator is 2p.
Firstly, we deal with the case (1). Similar to the discussion of Theorem

1.6, we have S =
{
1, 1

2 , . . . ,
1
2p

}
or S =

{
1, 1

2p , . . . ,
2p−1
2p

}
if 0 /∈ S and S ={

0, 1
2 , . . . ,

1
2p

}
or S =

{
0, 1

2p , . . . ,
2p−1
2p

}
if 1 /∈ S. All forms are impossible

since 1
p /∈ S. Hence, {0, 1} ⊆ S. Let

S =

{
0, 1,

a1
2p

,
a2
2p

, . . . ,
ar
2p

,
x1

2u1
, . . . ,

xs

2us
,
y1
v1

, . . . ,
yk
vk

}
with r ≥ 1 and r + s + k = 2p − 2, where the fractions are irreducible and
(ui, p) = 1 (1 ≤ i ≤ s), (vj , 2p) = 1 (1 ≤ j ≤ k). By ai

2p/
xj

2uj
=

aiuj

pxj
∈ F̄2p, we

have

(3.12) xj | ai,
aiuj

xj
≤ 2p− 1 (1 ≤ i ≤ r, 1 ≤ j ≤ s).

By ai

2p/
yj

vj
=

aivj

2pyj
∈ F̄2p, we have

(3.13) yj | ai,
aivj
yj

≤ 2p− 1 (1 ≤ i ≤ r, 1 ≤ j ≤ k).
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Let (a1, a2, . . . , ar) = d. If d = 1, then xi = 1 (1 ≤ i ≤ s) and yj =

1 (1 ≤ j ≤ k). By Lemma 3.1, we have S ⊆
{
0, 1, 1

2 ,
1
3 , . . . ,

1
2p

}
or S ⊆{

0, 1, 1
2p ,

2
2p , . . . ,

2p−1
2p

}
. Now, we assume that d > 1.

If r ≥ 2, then 2d < max
1≤i≤r

ai ≤ 2p − 1, and so d < p. Let S1 = S ∪ {d
p}.

One can easily prove that Q(S1) ⊆ F2p. By |S1| = 2p + 1 and Theorem

1.3, we have S1 =
{
0, 1, 1

2 ,
1
3 , . . . ,

1
2p

}
or S1 =

{
0, 1, 1

2p ,
2
2p , . . . ,

2p−1
2p

}
. Both

forms are impossible since 1
p /∈ S1. Hence, r = 1 and d = a1 ≥ 3. Let

Xi =
a1ui

xi
(1 ≤ i ≤ s) and Yj =

a1vj

yj
(1 ≤ j ≤ k). Then S can be rewritten as

S =

{
0, 1,

a1
2p

,
a1
2X1

,
a1
2X2

, . . . ,
a1
2Xs

,
a1
Y1

,
a1
Y2

, . . . ,
a1
Yk

}
.

Clearly, all of 2Xi’s and Yj ’s are distinct. By (3.12), (3.13) and S ⊆ F2p, we
have a1/2 < Xi ≤ 2p−1, (Xi, p) = 1 and a1 < Yj ≤ 2p−1, (Yj , 2p) = 1. Thus,

2p = |S| ≤ 2 +
(
2p− 1− a1 − 1

2

)
+
(2p− 1− a1

2

)
= 3p+ 1− a1.

So a1 ≤ p+ 1. By (a1, 2p) = 1, we have a1 < p. We observe that for p < n ≤
2p − 1, if (n, Yj) = 1 for some j ∈ [1, k], then a1

2n /∈ S. Otherwise, a1

2n/
a1

Yj
=

Yj

2n ∈ F̄2p which is impossible since 2n > 2p and (2n, Yj) = 1. Therefore,

a1
2(2αjYj + 1)

/∈ S (Yj ∈ (a1, p− 2]),
a1

2(Yj − 1)
/∈ S (Yj ∈ [p+ 2, 2p− 1]),

where αj is an integer such that 2αjYj ∈ [p + 1, 2p − 2]. Furthermore, when
2αjYj > p+ 1, we also get that

(3.14)
a1

2(2αjYj − 1)
/∈ S.

Let

A =
{ a1
2(2αjYj + 1)

: Yj ∈ (a1, p− 2]
}
, B =

{ a1
2(Yj − 1)

: Yj ∈ [p+ 2, 2p− 1]
}
.

Then |A| + |B| = k. Since a1/2 < Xi ≤ 2p − 1 and a1/2 ≤ (2p − 1)/2 < p, it
follows from (Xi, p) = 1 that{ a1

2X1
, . . . ,

a1
2Xs

}
⊆

{ a1
a1 + 1

,
a1

a1 + 3
, . . . ,

a1
2(2p− 1)

}
\
(
A ∪B ∪

{a1
2p

})
.

Hence, s ≤ 2p− 1− a1−1
2 − k − 1. Thus,

2p = |S| ≤ 3 +
(
2p− 2− a1 − 1

2
− k

)
+ k = 2p+ 1− a1 − 1

2
,

which implies that a1 = 3 and p ≥ 5. At this point, one can easily get that

S =
{
0, 1,

3

4
,
3

6
, . . . ,

3

2(2p− 1)
,
3

Y1
,
3

Y2
, . . . ,

3

Yk

}
\ (A ∪B).(3.15)
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By 2p − 3 > p and (3, 2p − 3) = 1, we have 3
2(2p−3) /∈ S. Since the number

of Yj ’s with Yj ∈ (3, p − 2] is ≤ p−5
2 , there are at least two odd integers

p+2 ≤ m1,m2 ≤ 2p− 1 for which { 3
2m1

, 3
2m2

} ⊆ S. Hence, there exists an odd

integer m ∈ [p+ 2, 2p− 5] such that 3
2m ∈ S and p ≥ 7. Let

max
{
m ∈ [p+ 2, 2p− 5] : 2 ∤ m,

3

2m
∈ S

}
= m0.

Then 3
2(m0+2) /∈ S. By (3.15), we havem0+2 = 2αjYj+1 for some Yj ∈ (3, p−2].

Since 2αjYj = m0+1 > p+1, it follows from (3.14) that 3
2m0

/∈ S, contradictory
to the definition of m0.

Now, we deal with the case (2). Similarly, we have {0, 1} ⊆ S. Let

S =

{
0, 1,

b1
p
, . . . ,

bt
p
,
x1

2u1
, . . . ,

xs

2us
,
y1
v1

, . . . ,
yk
vk

}
with t ≥ 1 and t + s + k = 2p − 2, where the fractions are irreducible and

(ui, p) = 1 (1 ≤ i ≤ s), (vj , 2p) = 1 (1 ≤ j ≤ k). By bi
p /

xj

2uj
=

2biuj

pxj
∈ F̄2p, we

have

xj | bi (1 ≤ i ≤ t, 1 ≤ j ≤ s).

By bi
p /

yj

vj
=

bivj
pyj

∈ F̄2p, we have

yj | bi or
yj
2

| bi (1 ≤ i ≤ t, 1 ≤ j ≤ k).

Let (b1, . . . , bt) = d. Then xi | d for 1 ≤ i ≤ s and yj | d or
yj

2 | d for 1 ≤ j ≤ k.
Suppose that the number of yj ’s with yj | d is k1, and the number of yj ’s with
yj ∤ d and

yj

2 | d is m. Then k1 +m = k. Without loss of generality, we may
assume that yj | d for 1 ≤ j ≤ k1. Let s+ k1 = l and

Xi=
2uid

xi
(1 ≤ i ≤ s), Xs+i=

vid

yi
(1 ≤ i ≤ k1) and Yj=

2vk1+jd

yk1+j
(1 ≤ j ≤ m).

Clearly, we have 2 ∤ Yj . Then S can be rewritten as

S =

{
0, 1,

b1
p
, . . . ,

bt
p
,
d

X1
, . . . ,

d

Xl
,
2d

Y1
, . . . ,

2d

Ym

}
.

Assume that b1 < b2 < · · · < bt. Then td ≤ bt ≤ p − 1 and so t ≤ p−1
d . For

1 ≤ i ≤ l, by bt
p /

d
Xi

= btXi

pd ∈ F̄2p, we have

(3.16)
btXi

d
≤ 2p− 1 (1 ≤ i ≤ l).

For 1 ≤ j ≤ m, by bt
p /

2d
Yj

=
btYj

2pd ∈ F̄2p, we have that, if 2d | bt, then

(3.17)
btYj

2d
≤ 2p− 1,
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if 2d ∤ bt, then

(3.18)
btYj

d
≤ 2p− 1.

We distinguish into two cases according to 2 ≤ t ≤ p−1
d and t = 1.

Case 1. 2 ≤ t ≤ p−1
d . By (3.16), (3.17), (3.18) and S ⊆ F2p, we have

(3.19) d < Xi ≤
⌊2p− 1

t

⌋
(1 ≤ i ≤ l), 2d < Yj ≤

⌊2(2p− 1)

t

⌋
(1 ≤ j ≤ m).

It follows from 2 ∤ Yj that

|S| ≤ 2 + t+
(2p− 1

t
− d

)
+
(2p− 1

t
− d+

1

2

)
=

2(2p− 1)

t
+ t− 2d+

5

2
.

If d ≥ 2, then 2 ≤ t ≤ p−1
2 and p ≥ 5. It follows that

|S| ≤ 2(2p− 1)

t
+ t− 3

2
≤ max

{2(2p− 1)

t
+ t : t ∈

{
2,

p− 1

2

}}
− 3

2
< 2p,

a contradiction. Thus, d = 1. At this point, we have 2 ≤ t ≤ p− 1 and

2p = |S| ≤ 2(2p− 1)

t
+ t+

1

2
.

If 3 ≤ t ≤ p− 1, then p ≥ 5 and 2(2p−1)
t + t+ 1

2 < 2p, a contradiction. Hence,
t = 2. Since Yj ̸= p, it follows from (3.19) and d = 1 that

2p = |S| ≤ 4 + (p− 1− d) + (p− d− 1) = 4 + (p− 2) + (p− 2) = 2p.

This shows that l = m = p − 2, and so {X1, X2, . . . , Xl} = {2, 3, . . . , p − 1}
and {Y1, Y2, . . . , Ym} = {3, 5, . . . , 2p − 1} \ {p}. By (3.16), we get b2 ≤ 2. So
{b1, b2} = {1, 2}. Therefore,

S =

{
0, 1,

1

2
,
1

3
, . . . ,

1

p
,
2

3
,
2

5
, . . . ,

2

2p− 1

}
=

{
0, 1,

2

3
,
2

4
, . . . ,

2

2p

}
.

Case 2. t = 1. In this case, d = b1. By (3.16), (3.18) and S ⊆ F2p, we have
b1 < Xi ≤ 2p− 1, Xi ̸= p (1 ≤ i ≤ l) and 2b1 < Yj ≤ 2p− 1, (2p, Yj) = 1 (1 ≤
j ≤ m). Note that for p < n ≤ 2p − 1, if (n, Yj) = 1 for some j ∈ [1,m], then
b1
n /∈ S. Otherwise, b1

n / 2b1
Yj

=
Yj

2n ∈ F̄2p which is impossible since (2n, Yj) = 1

and 2n > 2p. By similar discussion with case (1), we have b1
2αjYj+1

/∈ S for

2b1 < Yj < p and b1
Yj−1 /∈ S for p < Yj ≤ 2p − 1, where αj is the integer such

that p < 2αjYj < 2p. Moreover, if 2αjYj > p+ 1, then

(3.20)
b1

2αjYj − 1
/∈ S

and if p < Yj + 1 < 2p, then

(3.21)
b1

Yj + 1
/∈ S.
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Let

A1 =
{ b1
2αjYj + 1

: 2b1 < Yj < p
}
, B1 =

{ b1
Yj − 1

: p < Yj ≤ 2p− 1
}

and

S1 =
{
0, 1,

b1
b1 + 1

,
b1

b1 + 2
, . . . ,

b1
2p− 1

,
2b1
Y1

,
2b1
Y2

, . . . ,
2b1
Ym

}
\ (A1 ∪B1).

Clearly, S ⊆ S1. Since all Yj ’s are odd, we have A∩B = ∅, and so |A1|+ |B1| =
m. Hence,

2p = |S| ≤ |S1| = 2 + (2p− 1− b1 −m) +m = 2p+ 1− b1.

This shows that b1 = 1 and l = 2p− 3−m. And now,

S = S1 =
{
0, 1,

1

2
,
1

3
, . . . ,

1

2p− 1
,
2

Y1
, . . . ,

2

Ym

}
\ (A1 ∪B1).(3.22)

For p = 3, by 2 = 2b1 < Yj ≤ 2p− 1 = 5 and 1 = (Yj , 2p) = (Yj , 6), we have

m ≤ 1. When m = 0, (3.22) implies that S =
{
0, 1, 1

2 ,
1
3 ,

1
4 ,

1
5

}
. When m = 1,

we have Y1 = 5. It follows from (3.22) that S =
{
0, 1, 1

2 ,
1
3 ,

1
5 ,

2
5

}
.

Let p ≥ 5. Since |A1| = |{Yj : Yj ∈ (2, p − 2]}| ≤ p−3
2 , there is at least one

odd integer a ∈ [p + 2, 2p − 1] such that 1
a ∈ S. We will show that 1

2p−1 ∈ S.

Assume that 1
2p−1 /∈ S, then there is an odd integer a ∈ [p+2, 2p−3] for which

1
a ∈ S. Let

max
{
a ∈ [p+ 2, 2p− 3] : 2 ∤ a,

1

a
∈ S

}
= a0.

Then 1
a0+2 /∈ S. By the definition of A1 and (3.22), we have a0+2 = 2αjYj +1

for some Yj ∈ (2, p − 2]. However, since a0 = 2αjYj − 1 > p, it follows from
(3.20) that 1

a0
/∈ S, a contradiction with the definition of a0. Thus, 1

2p−1 ∈ S.

Similarly, we can prove that 1
2p−3 ∈ S if |{Yj : Yj ∈ (2, p− 2]}| ≤ p−5

2 .

Subcase 2.1. |{Yj : Yj ∈ (2, p− 2]}| = p−3
2 . In this case,{

0, 1,
1

2
,
1

3
, . . . ,

1

p
,

1

2p− 1
,
2

3
,
2

5
, . . . ,

2

p− 2

}
⊆ S.

By 1
2p−1/

2
2p−3 = 2p−3

2(2p−1) /∈ F̄2p and 1
p+3/

2
3 = 3

2(p+3) /∈ F̄2p, we have 2
2p−3 /∈ S

and 1
p+3 /∈ S, respectively. By (3.22) and the definitions of A1 and B1, we

obtain 1
2p−4 ∈ S and 2

p+4 ∈ S. Thus,{
0, 1,

1

2
,
1

3
, . . . ,

1

p
,

1

2p− 1
,

1

2p− 4
,
2

3
,
2

5
, . . . ,

2

p− 2
,

2

p+ 4

}
⊆ S.

For p = 5, the cardinality of the left set above is 10 = 2p. Therefore,

S =
{
0, 1, 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
9 ,

2
3 ,

2
9

}
.
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By 2
2p−3 /∈ S and 2

p+4 ∈ S, we have p ̸= 7. For p ≥ 11, let

max{Yj : Yj ∈ [p+ 2, 2p− 5]} = Y.

One should notice that such Y does exist since p+4 < 2p−5 and 2
p+4 ∈ S. Then

2
Y+2 /∈ S. By (3.22), we have 1

Y+1 ∈ S. However, it follows from p < Y +1 < 2p

and (3.21) that 1
Y+1 /∈ S, a contradiction.

Subcase 2.2. |{Yj : Yj ∈ (2, p−2]}| ≤ p−5
2 . In this case, { 1

2p−1 ,
1

2p−3} ⊆ S.

Since 1
2p−1/

2
2p−3 = 2p−3

2(2p−1) /∈ F̄2p and 1
2p−3/

2
2p−1 = 2p−1

2(2p−3) /∈ F̄2p, both
2

2p−3

and 2
2p−1 do not belong to S.

Now, we prove that m = 0. If |{Yj : Yj ∈ [p + 2, 2p − 1]}| ≥ 1, then we
can deduce a contradiction by similar discussion with Subcase 2.1. Hence,
|{Yj : Yj ∈ [p + 2, 2p − 1]}| = 0. By (3.22), we have 1

p+3 ∈ S. If |{Yj : Yj ∈
(2, p− 2]}| ≥ 1, let

min{2αjYj + 1 : Yj ∈ (2, p− 2]} = 2αj0Yj0 + 1.

Then 2αj0Yj0 + 1 = p + 2. Otherwise, 2αj0Yj0 − 1 ≥ p + 2. From (3.20), we
deduce that 1

2
αj0 Yj0−1

/∈ S which contradicts with (3.22). At this point, by

1
p+3/

2
Yj0

=
Yj0

2(p+3) ∈ F2p, we have (Yj0 , p + 3) > 1, which is impossible since

(2αj0Yj0 , p+ 3) = (p+ 1, p+ 3) = 2. Thus, |{Yj : Yj ∈ (2, p− 2]}| = 0, and so

m = 0. Therefore, S =
{
0, 1, 1

2 ,
1
3 , . . . ,

1
2p−1

}
. This completes the proof for the

case n = 2p. □
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