ON THE STRUCTURE OF CERTAIN SUBSET OF FAREY SEQUENCE

Xing-Wang Jiang and Ya-Li Li

Abstract

Let F_{n} be the Farey sequence of order n. For $S \subseteq F_{n}$, let $\mathcal{Q}(S)$ be the set of rational numbers x / y with $x, y \in S, x \leq y$ and $y \neq 0$. Recently, Wang found all subsets S of F_{n} with $|S|=n+1$ for which $\mathcal{Q}(S) \subseteq F_{n}$. Motivated by this work, we try to determine the structure of $S \subseteq F_{n}$ such that $|S|=n$ and $\mathcal{Q}(S) \subseteq F_{n}$. In this paper, we determine all sets $S \subseteq F_{n}$ satisfying these conditions for $n \in\{p, 2 p\}$, where p is prime.

1. Introduction

For a positive integer n, let F_{n} denote the Farey sequence of order n, that is, the set of irreducible fractions between 0 and 1 whose denominators do not exceed n. For $S \subseteq F_{n}$, define

$$
\mathcal{Q}(S)=\left\{\frac{x}{y}: x, y \in S, x \leq y, y \neq 0\right\}
$$

Recently, Wang [7] found all subsets $S \subseteq F_{n}$ for which $\mathcal{Q}(S)=F_{n}$.
Theorem 1.1 ([7, Theorem 3]). Suppose $S \subseteq F_{n}$ and $\mathcal{Q}(S)=F_{n}$. Then S can only be one of the following two sets:

$$
S=\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{n}\right\} \text { or } S=\left\{0,1, \frac{1}{n}, \ldots, \frac{n-1}{n}\right\} .
$$

Wang [7] also proved the following results.
Theorem 1.2 ([7, Theorem 1]). If $S \subseteq F_{n}$ and $\mathcal{Q}(S) \subseteq F_{n}$, then S has at most $n+1$ elements.

[^0]Theorem 1.3 ([7, Theorem 4]). Suppose $S \subseteq F_{n},|S|=n+1$ and $\mathcal{Q}(S) \subseteq F_{n}$. Then

$$
S=\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{n}\right\} \text { or } S=\left\{0,1, \frac{1}{n}, \ldots, \frac{n-1}{n}\right\}
$$

except for $n=4$, where we have an additional set $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}$.
In 1970, Graham [4] proposed the following conjecture.
Conjecture 1.4. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers. Then

$$
\max _{i \neq j} \frac{a_{i}}{\left(a_{i}, a_{j}\right)} \geq n
$$

Vélez [6] pointed out that Graham also made the following stronger conjecture.
Conjecture 1.5. Let $M_{n}=[1,2, \ldots, n]$ and $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers. If

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1 \text { and } \max _{i \neq j} \frac{a_{i}}{\left(a_{i}, a_{j}\right)}=n
$$

then $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ can only be $\{1,2, \ldots, n\}$ or $\left\{\frac{M_{n}}{n}, \frac{M_{n}}{n-1}, \ldots, \frac{M_{n}}{1}\right\}$ except for $n=4$, where we have the additional sequence $\{2,3,4,6\}$.

These conjectures have been confirmed by Balasubramanian and Soundararajan [1] based on deep analytical methods. Wang [7] showed that Theorems 1.2 and 1.3 are equivalent to Conjectures 1.4 and 1.5 , respectively. In Wang's proofs of Theorems 1.2 and 1.3, Conjectures 1.4 and 1.5 are necessary. But there are potentially other proofs which do not need the conjectures. Wang [7] asked whether one can prove Theorems 1.2 and 1.3 directly and thus providing new proofs for Graham's conjectures. For more results about Graham's conjectures, see $[2,3,5,8,9]$.

By Theorem 1.2, we know that $n+1$ is critical. Motivated by Theorem 1.3, we study the structure of $S \subseteq F_{n}$ with $|S|=n$ for which $\mathcal{Q}(S) \subseteq F_{n}$. Obviously, if $S=\left\{0,1, \frac{2}{3}, \frac{2}{4} \ldots, \frac{2}{n}\right\}$ or $S=\left\{0,1, \frac{1}{n-1}, \ldots, \frac{n-2}{n-1}\right\}$ or S is a subset of the sets in Theorem 1.3, then $\mathcal{Q}(S) \subseteq F_{n}$. We wonder whether there is other desired set $S \subseteq F_{n}$. In this paper, we determine the structure of $S \subseteq F_{n}$ with $|S|=n$ and $\mathcal{Q}(S) \subseteq F_{n}$ for $n \in\{p, 2 p\}$, where p is prime. For other n, we attempted to figure out the structure of the desired set S but without success. In this paper, the following results are proved.

Theorem 1.6. Let $n \in\{p, 2 p\}$, where p is prime. Let S be a subset of F_{n} with $|S|=n$. Then $\mathcal{Q}(S) \subseteq F_{n}$ if and only if S satisfies one of the following conditions:
(i) $S=\left\{0,1, \frac{2}{3}, \frac{2}{4} \ldots, \frac{2}{n}\right\}$,
(ii) $S \subseteq\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}\right\}$,
(iii) $S \subseteq\left\{0,1, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}\right\}$,
(iv) $S=\left\{0,1, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, \frac{n-2}{n-1}\right\}$ except for $n \in\{4,5,6,10\}$. For $n=4$, there are two additional sets $S=$ $\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}$ and $S=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}$. For $n=5$, there are two additional sets $S=\left\{0,1, \frac{1}{5}, \frac{2}{5}, \frac{1}{2}\right\}$ and $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}$. For $n=6$, there is an additional set $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{2}{5}\right\}$. For $n=10$, there are two additional sets $S=$ $\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{9}, \frac{2}{3}, \frac{2}{9}\right\}$ and $S=\left\{0,1, \frac{1}{6}, \frac{1}{2}, \frac{1}{9}, \frac{2}{9}, \frac{1}{3}, \frac{4}{9}, \frac{5}{9}, \frac{2}{3}\right\}$.

The proof of Theorem 1.6 will be divided into two parts according to $n=p$ and $n=2 p$, which we will give in Section 2 and Section 3, respectively. In the following, we denote \bar{F}_{n} the set of all nonnegative fractions with both denominator and numerator not more than n.

2. Proof of Theorem 1.6 for $n=p$

It is easy to verify that the sufficiency is true. Next, we prove the necessity. If $0 \notin S$, then $S \cup\{0\} \subseteq F_{p}$ and $\mathcal{Q}(S \cup\{0\}) \subseteq F_{p}$. By Theorem 1.3, we have $S \cup\{0\}=\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{p}\right\}$ or $S \cup\{0\}=\left\{0,1, \frac{1}{p}, \ldots, \frac{p-1}{p}\right\}$. Thus,

$$
S=\left\{1, \frac{1}{2}, \ldots, \frac{1}{p}\right\} \text { or } S=\left\{1, \frac{1}{p}, \ldots, \frac{p-1}{p}\right\}
$$

Similarly, we can get that if $1 \notin S$, then

$$
S=\left\{0, \frac{1}{2}, \ldots, \frac{1}{p}\right\} \text { or } S=\left\{0, \frac{1}{p}, \ldots, \frac{p-1}{p}\right\} .
$$

In the following, we assume that $\{0,1\} \subseteq S$. Clearly, if $p=2$, then $S=\{0,1\}$ which satisfies the condition (i). Now, we suppose that $p \geq 3$. Let

$$
S=\left\{0,1, \frac{x_{1}}{p}, \frac{x_{2}}{p}, \ldots, \frac{x_{r}}{p}, \frac{y_{1}}{z_{1}}, \frac{y_{2}}{z_{2}}, \ldots, \frac{y_{s}}{z_{s}}\right\}, r+s=p-2
$$

where the fractions are irreducible and $\left(p, z_{i}\right)=1(1 \leq i \leq s)$. Clearly, $S \subseteq$ $\left\{0,1, \frac{1}{p}, \ldots, \frac{p-1}{p}\right\}$ when $s=0$. If $r=0$, then $S \subseteq F_{p-1}$ and $\mathcal{Q}(S) \subseteq F_{p-1}$. By Theorem 1.3,

$$
S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{p-1}\right\} \text { or } S=\left\{0,1, \frac{1}{p-1}, \frac{2}{p-1}, \ldots, \frac{p-2}{p-1}\right\}
$$

except for $p=5$, where we have an additional set $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}$. Now, we consider the case $r \geq 1, s \geq 1$. Since $\frac{x_{i}}{p} / \frac{y_{j}}{z_{j}}=\frac{x_{i} z_{j}}{p y_{j}} \in \bar{F}_{p}$, we have

$$
\begin{equation*}
y_{j} \mid x_{i}, \frac{x_{i} z_{j}}{y_{j}} \leq p-1(1 \leq i \leq r, 1 \leq j \leq s) \tag{2.1}
\end{equation*}
$$

Case 1. $\left(x_{1}, x_{2}, \ldots, x_{r}\right)=1$. By (2.1), we have $y_{j} \mid\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ which implies $y_{j}=1$ for any $1 \leq j \leq s$. And now, all z_{j} 's are distinct and greater than 1. It follows from (2.1) that

$$
\begin{equation*}
r(s+1) \leq \max _{i \in[1, r]} x_{i} \cdot \max _{j \in[1, s]} z_{j} \leq p-1=r+s+1 \tag{2.2}
\end{equation*}
$$

Thus, $r \leq 2$. If $r=1$, then $x_{1}=1$ by $\left(x_{1}, x_{2}, \ldots, x_{r}\right)=1$. Therefore, $S \subseteq\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{p}\right\}$. If $r=2$, then by (2.2), we have $s=1$ and $p=5$. Furthermore, by (2.2), we can get that $\left\{x_{1}, x_{2}\right\}=\{1,2\}$ and $z_{1}=2$. Therefore, $S=\left\{0,1, \frac{1}{5}, \frac{2}{5}, \frac{1}{2}\right\}$.

Case 2. $\left(x_{1}, x_{2}, \ldots, x_{r}\right)>1$. Without loss of generality, we may assume $x_{r}=\max _{i \in[1, r]} x_{i}$. Then $x_{r} \geq 2 r$. Let $z_{j}^{\prime}=\frac{x_{r} z_{j}}{y_{j}}(1 \leq j \leq s)$. Then S can be rewritten as

$$
S=\left\{0,1, \frac{x_{1}}{p}, \frac{x_{2}}{p}, \ldots, \frac{x_{r}}{p}, \frac{x_{r}}{z_{1}^{\prime}}, \frac{x_{r}}{z_{2}^{\prime}}, \ldots, \frac{x_{r}}{z_{s}^{\prime}}\right\} .
$$

Since $S \subseteq F_{p}$, we have $x_{r}<z_{j}^{\prime}$ and z_{j}^{\prime} 's are distinct. By (2.1),

$$
2 r+s \leq x_{r}+s \leq \max _{j \in[1, s]} z_{j}^{\prime} \leq p-1=r+s+1
$$

It follows that $r=1, x_{1}=2$ and $s=p-3$. Therefore, $S=\left\{0,1, \frac{2}{3}, \frac{2}{4} \ldots, \frac{2}{p}\right\}$. This completes the proof for the case $n=p$.

3. Proof of Theorem 1.6 for $n=2 p$

In this section, we prove Theorem 1.6 holds for $n=2 p$. Firstly, we give some lemmas which will be used in the the following proof.

Lemma 3.1. Let p be odd prime and

$$
S=\left\{0,1, \frac{a_{1}}{2 p}, \frac{a_{2}}{2 p}, \ldots, \frac{a_{r}}{2 p}, \frac{b_{1}}{p}, \ldots, \frac{b_{t}}{p}, \frac{1}{2 u_{1}}, \ldots, \frac{1}{2 u_{s}}, \frac{1}{v_{1}}, \ldots, \frac{1}{v_{k}}\right\}
$$

be a subset of $F_{2 p}$ with $r+s+t+k=2 p-2$, where these fractions are irreducible and $p \nmid u_{i}(1 \leq i \leq s),\left(v_{j}, 2 p\right)=1(1 \leq j \leq k)$. If $\mathcal{Q}(S) \subseteq F_{2 p}$, then

$$
S \subseteq\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\} \text { or } S \subseteq\left\{0,1, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}
$$

Proof. We may assume that $a_{1}<\cdots<a_{r}, b_{1}<\cdots<b_{t}, u_{1}<\cdots<u_{s}$ and $v_{1}<\cdots<v_{k}$. Clearly, $r, s, t \leq p-1$ and $k \leq p-2$. We have $a_{r} \geq 2 r-1$ if $r \geq 1$ and $v_{k} \geq 2 k+1$ if $k \geq 1$. Moreover, by $a_{i} \neq p$ and $v_{i} \neq p$ we have $a_{r} \geq 2 r+1$ for $r \geq \frac{p+1}{2}$ and $v_{k} \geq 2 k+3$ for $k \geq \frac{p-1}{2}$.

Case 1. $r \geq 1$. We divide into two subcases $s+t \leq p-1$ and $s+t \geq p$.
Subcase 1.1. $s+t \leq p-1$. By $r+s+t+k=2 p-2$ we have $r+k \geq p-1$.
Subcase 1.1.1. $k \geq 1$. By $\frac{a_{r}}{2 p} / \frac{1}{v_{k}}=\frac{a_{r} v_{k}}{2 p} \in \bar{F}_{2 p}$,

$$
(2 r-1)(2 k+1) \leq a_{r} v_{k} \leq 2 p-1 \leq 2 r+2 k+1 .
$$

This implies $r=1$ and $k=p-2$. Then we have $v_{p-2}=2 p-1$ and $a_{1}=1$. If $t=0$, then $S \subseteq\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\}$. If $t \geq 1$, then it follows from $\frac{b_{t}}{p} / \frac{1}{v_{p-2}}=$ $\frac{b_{t}(2 p-1)}{p} \in \bar{F}_{2 p}$ that $b_{t}(2 p-1) \leq 2 p-1$. Thus, $t=1$ and $b_{1}=1$. Therefore, $S \subseteq\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\}$.

Subcase 1.1.2. $k=0$. Note that $r+k \geq p-1$ and $r \leq p-1$. Then in this case, $r=p-1$ and $s+t=p-1$. We have $a_{p-1}=2 p-1$. If $s=0$, then $S \subseteq\left\{0,1, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$. If $s \geq 1$, then $\frac{a_{p-1}}{2 p} / \frac{1}{2 u_{s}}=\frac{(2 p-1) u_{s}}{p} \in \bar{F}_{2 p}$ implies $(2 p-1) u_{s} \leq 2 p-1$, and so $s=1$ and $u_{1}=1$. Therefore, $S \subseteq$ $\left\{0,1, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$.

Subcase 1.2. $s+t \geq p$. Noting that $s, t \leq p-1$, we have $s, t \geq 1$. By $\frac{b_{t}}{p} / \frac{1}{2 u_{s}}=\frac{2 u_{s} b_{t}}{p} \in \bar{F}_{2 p}$,

$$
\begin{equation*}
s t \leq u_{s} b_{t} \leq p-1 \tag{3.1}
\end{equation*}
$$

If $s, t \geq 2$, then $s+t \leq s t \leq p-1$, a contradiction. Hence, $s=1$ or $t=1$, and so $\{s, t\}=\{1, p-1\}$.

If $s=1, t=p-1$, then $u_{1}=1$ and $b_{p-1}=p-1$ by (3.1). When $k \geq 1$, we can deduce from $\frac{b_{p-1}}{p} / \frac{1}{v_{k}}=\frac{(p-1) v_{k}}{p} \in \bar{F}_{2 p}$ that $(p-1) v_{k} \leq 2 p-1$. Thus, $v_{k} \leq 2$ which is impossible. Therefore, $k=0$ and $S \subseteq\left\{0,1, \frac{1}{2 p}, \frac{2}{2 p} \ldots, \frac{2 p-1}{2 p}\right\}$.

If $s=p-1, t=1$, then $u_{p-1}=p-1$ and $b_{1}=1$ by (3.1). Since $r \geq 1$, it follows from $\frac{a_{r}}{2 p} / \frac{1}{2 u_{p-1}}=\frac{(p-1) a_{r}}{p} \in \bar{F}_{2 p}$ that $(p-1) a_{r} \leq 2 p-1$. By $2 \nmid a_{r}$, we have $r=1$ and $a_{1}=1$. Therefore, $S \subseteq\left\{0,1, \frac{1}{2}, \frac{1}{3} \ldots, \frac{1}{2 p}\right\}$.

Case 2. $r=0$. It is clear that $\mathcal{Q}(S) \subseteq F_{2 p-1}$. By Theorem 1.3, we have $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2 p-1}\right\}$ or $S=\left\{0,1, \frac{1}{2 p-1}, \frac{2}{2 p-1}, \ldots, \frac{2 p-2}{2 p-1}\right\}$. The latter form is impossible since $\frac{2}{2 p-1} \notin S$. Therefore, $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2 p-1}\right\} \subseteq$ $\left\{0,1, \frac{1}{2}, \frac{1}{3} \ldots, \frac{1}{2 p}\right\}$. This completes the proof.
Lemma 3.2. Let p be odd prime and

$$
S=\left\{0,1, \frac{p}{b}, \frac{X_{1}}{2 b}, \frac{X_{2}}{2 b}, \ldots, \frac{X_{k}}{2 b}, \frac{Y_{1}}{b}, \frac{Y_{2}}{b}, \ldots, \frac{Y_{l}}{b}\right\}
$$

be a subset of $F_{2 p}$ with $k+l=2 p-3$, where $p<b \leq 2 p-1,\left(X_{i}, 2 p\right)=1(1 \leq$ $i \leq k)$ and $\left(Y_{j}, p\right)=1(1 \leq j \leq l)$. If $\mathcal{Q}(S) \subseteq F_{2 p}$, then

$$
S=\left\{0,1, \frac{1}{2 p-1}, \frac{2}{2 p-1}, \ldots, \frac{2 p-2}{2 p-1}\right\}
$$

except for $p \in\{3,5\}$. There is an additional set $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{2}{5}\right\}$ for $p=3$ and an additional set $S=\left\{0,1, \frac{1}{6}, \frac{1}{2}, \frac{1}{9}, \frac{2}{9}, \frac{1}{3}, \frac{4}{9}, \frac{5}{9}, \frac{2}{3}\right\}$ for $p=5$.
Proof. If $k=0$, then $l=2 p-3$. Since $p \notin\left\{Y_{j}: 1 \leq j \leq l\right\}$ and $Y_{j}<b \leq 2 p-1$, we have $\left\{Y_{j}: 1 \leq j \leq l\right\}=\{1,2, \ldots, 2 p-2\} \backslash\{p\}$. Thus, $b=2 p-1$ and

$$
S=\left\{0,1, \frac{1}{2 p-1}, \frac{2}{2 p-1}, \ldots, \frac{2 p-2}{2 p-1}\right\}
$$

Now, we deal with the case $k>0$. By $\frac{p}{b} / \frac{X_{i}}{2 b}=\frac{2 p}{X_{i}} \in \bar{F}_{2 p}$ and $\left(X_{i}, 2 p\right)=1$, we have $X_{i} \leq 2 p-1$. Since $b>p$, we have $\frac{X}{2 b} \notin S$ for integers X with $(X, 2 b)=1$.

It follows that

$$
\begin{equation*}
\frac{1}{2 b} \notin S, \quad \frac{p}{2 b} \notin S \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{b \pm 1}{2 b} \notin S(2 \mid b), \frac{b \pm 2}{2 b} \notin S(2 \nmid b) . \tag{3.3}
\end{equation*}
$$

Firstly, we suppose that $p \geq 7$. Let l_{1} be the number of Y_{j} with $p<Y_{j}<b$. When b is even, we have $b+1 \in(p, 2 p-1]$. By (3.2) and (3.3),

$$
\left\{\frac{X_{1}}{2 b}, \frac{X_{2}}{2 b}, \ldots, \frac{X_{k}}{2 b}\right\} \subseteq\left\{\frac{1}{2 b}, \frac{3}{2 b}, \ldots, \frac{2 p-1}{2 b}\right\} \backslash\left\{\frac{1}{2 b}, \frac{p}{2 b}, \frac{b+1}{2 b}\right\}
$$

Hence, $k \leq p-3$. Similarly, we can get that $k \leq p-3$ when b is odd. It follows from $k+l=2 p-3$ that $l \geq p$, which indicates that $l_{1} \geq 1$ and $b \geq p+2$. Let α_{j} be the integer such that $2^{\alpha_{j}} \| Y_{j}$. For $p<Y_{j}<b$, by $\frac{X_{i}}{2 b} / \frac{Y_{j}}{b}=\frac{X_{i}}{2 Y_{j}} \in \bar{F}_{2 p}$, we have $\left(X_{i}, Y_{j}\right)>1$. From this, we get that, for $p<Y_{j}<b$,

$$
\begin{equation*}
\frac{Y_{j} / 2^{\alpha_{j}} \pm 2}{2 b} \notin S \tag{3.4}
\end{equation*}
$$

since $\left(\frac{Y_{j}}{2^{\alpha_{j}}} \pm 2,2 Y_{j}\right)=1$. And if $\frac{3}{2 b} \in S$, then

$$
\begin{equation*}
3 \mid Y_{j}\left(p<Y_{j}<b\right) \tag{3.5}
\end{equation*}
$$

By $2 \nmid X_{i}, Y_{j}$ could not be of the form 2^{α}. Let

$$
A=\left\{\frac{Y_{j} / 2^{\alpha_{j}}+2}{2 b}: 2 \mid Y_{j}, p<Y_{j}<b\right\}, B=\left\{\frac{Y_{j}+2}{2 b}: 2 \nmid Y_{j}, p<Y_{j}<b\right\}
$$

Hence, $\frac{5}{2 b} \leq \min A \leq \max A \leq \frac{p}{2 b}, \frac{p+4}{2 b} \leq \min B \leq \max B \leq \frac{2 p-1}{2 b}$, and so $|A \cup B|=l_{1}$. Let

$$
S^{\prime}=\left\{0,1, \frac{p}{b}, \frac{3}{2 b}, \frac{5}{2 b}, \ldots, \frac{2 p-1}{2 b}, \frac{Y_{1}}{b}, \frac{Y_{2}}{b}, \ldots, \frac{Y_{l}}{b}\right\} \backslash(A \cup B) .
$$

Then $S \subseteq S^{\prime}$ and $\left|S^{\prime}\right|=3+l+\left(p-1-l_{1}\right) \leq 3+\left(p-1+l_{1}\right)+\left(p-1-l_{1}\right)=2 p+1$. The claim below will be usually used in the following proof.
Claim 1. Let x be an odd integer with $3 \leq x \leq 2 p-1$. If $\frac{x}{2 b} \notin S$ and $\frac{x}{2 b} \notin A \cup B$, then

$$
S=S^{\prime} \backslash\left\{\frac{x}{2 b}\right\}
$$

Proof of Claim 1. By $\frac{x}{2 b} \notin S$ and $\frac{x}{2 b} \notin A \cup B$, we have $S \subseteq S^{\prime} \backslash\left\{\frac{x}{2 b}\right\}$. It follows from

$$
2 p=|S| \leq\left|S^{\prime} \backslash\left\{\frac{x}{2 b}\right\}\right|=\left|S^{\prime}\right|-1 \leq 2 p
$$

that $S=S^{\prime} \backslash\left\{\frac{x}{2 b}\right\}$.

We return to the proof of Lemma 3.2 and divide into two cases according $2 \mid b$ and $2 \nmid b$.

Case 1. $2 \mid b$.
In this case, $p+3 \leq b \leq 2 p-2$. When $|B|=0$, by $\frac{b \pm 1}{2 b} \notin A$ and (3.3), we have $S \subseteq S^{\prime} \backslash\left\{\frac{b \pm 1}{2 b}\right\}$, which implies that $|S| \leq\left|S^{\prime}\right|-2 \leq 2 p-1$, a contradiction. Hence, $|B|>0$. Without loss of generality, we may assume that $p<Y_{j}<b$ for $j=1,2, \ldots, l_{1}$.

If $\frac{b+1}{2 b} \notin B$, then $S=S^{\prime} \backslash\left\{\frac{b+1}{2 b}\right\}$ by Claim 1. This indicates that $\frac{3}{2 b} \in S$, $\frac{p}{2 b} \in A$ and $\frac{b-1}{2 b} \in B$. By the definitions of A and B, we know that there are two integers $1 \leq j^{\prime}, j^{\prime \prime} \leq l_{1}$ such that $Y_{j^{\prime}}=2 p-4, Y_{j^{\prime \prime}}=b-3$. From $2 \mid b$ and $Y_{j^{\prime}}<b$, we get that $b=2 p-2$, and so $Y_{j^{\prime \prime}}=2 p-5$. However, by (3.5), we have $3 \mid 2 p-4$ and $3 \mid 2 p-5$, which is impossible. Hence, $\frac{b+1}{2 b} \in B$. Similarly, we can prove that $\frac{b-1}{2 b} \in B$. By the definitions of A and B, there exist two integers $1 \leq j_{1}, j_{2} \leq l_{1}$ such that $Y_{j_{1}}=b-1, Y_{j_{2}}=b-3$. From above argument, we know that $\frac{3}{2 b} \notin S$. Let $Y_{j_{0}}$ be the largest odd integer with $1 \leq j_{0} \leq l_{1}$ such that $\frac{Y_{j_{0}}}{b} \in S, \frac{Y_{j_{0}}-2}{b} \notin S$. Define $Y_{j_{0}}=p+2$ if such integer does not exist. Then we have $\frac{Y_{j_{0}}}{2 b} \notin B$. By $\left\{\frac{b-1}{b}, \frac{b-3}{b}\right\} \subseteq S$, we know $\frac{Y_{j_{0}}+2}{b} \in S$. It follows from (3.4) that $\frac{Y_{j_{0}}}{2 b} \notin S$. Hence, $S \subseteq S^{\prime} \backslash\left\{\frac{3}{2 b}, \frac{Y_{j_{0}}}{2 b}\right\}$. So $|S| \leq\left|S^{\prime}\right|-2 \leq 2 p-1$, a contradiction.

Case 2. $2 \nmid b$.
In this case, $p+2 \leq b \leq 2 p-1$. Firstly, we deal with the subcase $|B|=0$. If $b=p+2$, then $p<b+2<b+4 \leq 2 p-1$ by $p \geq 7$. It follows from $\frac{b+2}{2 b} \notin S$ and $\frac{b+4}{2 b} \notin S$ that $S \subseteq S^{\prime} \backslash\left\{\frac{b+2}{2 b}, \frac{b+4}{2 b}\right\}$. Hence, $|S| \leq\left|S^{\prime}\right|-2 \leq 2 p-1$, a contradiction. If $b=2 p-1$, then $p<b-4<b-2 \leq 2 p-1$. If $p+2<b<2 p-1$, then $p<b-2<b+2 \leq 2 p-1$. In both cases, by similar argument, we can get that $|S| \leq\left|S^{\prime}\right|-2 \leq 2 p-1$, a contradiction.

Now, we deal with the subcase $|B|>0$. At this point, $p+4 \leq b \leq 2 p-1$.
For $p+4 \leq b \leq 2 p-3$, we have $\frac{b+2}{2 b} \notin B$. By (3.3) and Claim 1, we obtain $S=S^{\prime} \backslash\left\{\frac{b+2}{2 b}\right\}$, which indicates that $\frac{3}{2 b} \in S, \frac{p}{2 b} \in A$ and $\frac{b-2}{2 b} \in B$. From the definition of A, there exists an integer $1 \leq j^{\prime} \leq l_{1}$ such that $Y_{j^{\prime}}=2 p-4$. And now, $b=2 p-3$ and $3 \mid 2 p-4=b-1$. Since $3 \nmid b-2$, we have $\frac{b-2}{b} \notin S$ and $\frac{(b-2)+2}{2 b}=\frac{1}{2} \notin B$. Hence, $\frac{1}{2} \in S$. However, $\frac{1}{2} / \frac{2 p-4}{2 p-3}=\frac{2 p-3}{2(2 p-4)} \notin \bar{F}_{2 p}$, a contradiction.

For $b=2 p-1$, we will prove that $\frac{2 p-5}{2(2 p-1)} \in B$ and $\frac{p}{2(2 p-1)} \in A$. Clearly, $2 p-5>p$ and $\frac{2 p-5}{2(2 p-1)} \notin S$. If $\frac{2 p-5}{2(2 p-1)} \notin B$, then $S=S^{\prime} \backslash\left\{\frac{2 p-5}{2(2 p-1)}\right\}$ by Claim 1, which indicates that $\frac{3}{2(2 p-1)} \in S, \frac{p}{2(2 p-1)} \in A$ and $\frac{2 p-3}{2(2 p-1)} \in B$. Hence, there are two integers $1 \leq j^{\prime}, j^{\prime \prime} \leq l_{1}$ such that $Y_{j^{\prime}}=2 p-4$ and $Y_{j^{\prime \prime}}=2 p-5$. By (3.5), $3 \mid 2 p-4$ and $3 \mid 2 p-5$ which is impossible. Therefore, $\frac{2 p-5}{2(2 p-1)} \in B$. Similarly, we can get that $\frac{p}{2(2 p-1)} \in A$. By the definitions of A and $B, Y_{j_{1}}=2 p-4$ and
$Y_{j_{2}}=2 p-7$ for some $1 \leq j_{1}, j_{2} \leq l_{1}$. From $p<Y_{j_{2}}=2 p-7$, we obtain $p>7$, that is $p \geq 11$.

It is easy to see that $2 p-9>p$ and $\frac{2 p-9}{2(2 p-1)} \notin S$. If $\frac{2 p-9}{2(2 p-1)} \notin B$, then by Claim 1, we have $S=S^{\prime} \backslash\left\{\frac{2 p-9}{2(2 p-1)}\right\}$, which indicates that $\frac{3}{2(2 p-1)} \in S$ and $\frac{2 p-3}{2(2 p-1)} \in B$. Hence, there is an integer $1 \leq j^{\prime \prime \prime} \leq l_{1}$ such that $Y_{j^{\prime \prime \prime}}=2 p-5$. By (3.5), $3 \mid 2 p-4$ and $3 \mid 2 p-5$, which is impossible. Therefore, $\frac{2 p-9}{2(2 p-1)} \in B$. Similarly, we have $\frac{2 p-3}{2(2 p-1)} \in B$. By the definition of B, there are two integers $1 \leq j_{3}, j_{4} \leq l_{1}$ such that $Y_{j_{3}}=2 p-5$ and $Y_{j_{4}}=2 p-11$. And now, $\frac{3}{2(2 p-1)} \notin S$. Since

$$
\frac{1}{2} / \frac{2 p-5}{2 p-1}=\frac{2 p-1}{2(2 p-5)} \notin \bar{F}_{2 p}
$$

we have $\frac{1}{2}=\frac{2 p-1}{2(2 p-1)} \notin S$. Hence, $\frac{2 p-1}{2(2 p-1)} \in B$, which implies that $Y_{j_{5}}=2 p-3$ for some integer $1 \leq j_{5} \leq l_{1}$. Let $Y_{j_{0}}$ be the largest odd integer with $1 \leq j_{0} \leq l_{1}$ such that $\frac{Y_{j_{0}}}{2 p-1} \in S, \frac{Y_{j_{0}}-2}{2 p-1} \notin S$. Define $Y_{j_{0}}=p+2$ if such integer does not exist. By similar discussion to Case 1, we can get that $\frac{Y_{j_{0}}}{2(2 p-1)} \notin S$ and $\frac{Y_{j_{0}}}{2(2 p-1)} \notin B$. Hence, $S \subseteq S^{\prime} \backslash\left\{\frac{3}{2(2 p-1)}, \frac{Y_{j_{0}}}{2(2 p-1)}\right\}$. So $|S| \leq\left|S^{\prime}\right|-2 \leq 2 p-1$, a contradiction.

Now, we suppose that $p \in\{3,5\}$. Note that $X_{i} \leq 2 p-1$ and $\left(X_{i}, 2 p\right)=1$ for $1 \leq i \leq k$. For $p=3$, by $3=p<b \leq 2 p-1=5$, we have $b \in\{4,5\}$. If $b=4$, then all of $\frac{1}{8}, \frac{3}{8}$ and $\frac{5}{8}$ do not belong to S, contradictory with $k>0$. Hence, $b=5$. By $\frac{1}{10} \notin S, \frac{3}{10} \notin S$ and $k>0$, we have $\frac{1}{2}=\frac{5}{10} \in S$. It follows from $\frac{1}{2} / \frac{4}{5}=\frac{5}{8} \notin F_{6}$ that $\frac{4}{5} \notin S$. Thus, $S \subseteq\left\{0,1, \frac{3}{5}, \frac{1}{2}, \frac{1}{5}, \frac{2}{5}\right\} .|S|=2 p=6$ implies that $S=\left\{0,1, \frac{3}{5}, \frac{1}{2}, \frac{1}{5}, \frac{2}{5}\right\}$. For $p=5$, we have $b \in\{6,7,8,9\}$. If $b=6$, then $S \subseteq\left\{0,1, \frac{3}{12}, \frac{9}{12}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}\right\}$ since all of $\frac{1}{12}, \frac{5}{12}$ and $\frac{7}{12}$ do not belong to S. Hence, $|S| \leq 9<10=2 p$, a contradiction. If $b=7$, then by $\frac{1}{14}, \frac{3}{14}, \frac{5}{14}$ and $\frac{9}{14}$ not belonging to S, we have $S \subseteq\left\{0,1, \frac{7}{14}, \frac{1}{7}, \frac{2}{7}, \ldots, \frac{6}{7}\right\}$. Hence $|S| \leq 9<10=2 p$, a contradiction. If $b=8$, then $\frac{2 i-1}{16} \notin S$ for $i \in[1,5]$, contradictory with $k>0$. If $b=9$, then by $k>0$ and $\frac{2 i-1}{18} \notin S(i=$ $1,3,4$), we have $\frac{3}{18} \in S$ or $\frac{1}{2}=\frac{9}{18} \in S$. By (3.5), we have $\frac{7}{9} \notin S, \frac{8}{9} \notin S$ when $\frac{3}{18} \in S$. If $\frac{1}{2} \in S$, then by $\frac{1}{2} / \frac{j}{9}=\frac{9}{2 j} \notin \bar{F}_{10}$ for $j=7,8$, we have $\frac{7}{9} \notin S, \frac{8}{9} \notin S$. Hence, $S \subseteq\left\{0,1, \frac{1}{6}, \frac{1}{2}, \frac{1}{9}, \frac{2}{9}, \frac{3}{9}, \frac{4}{9}, \frac{5}{9}, \frac{6}{9}\right\} .|S|=10$ implies that $S=\left\{0,1, \frac{1}{6}, \frac{1}{2}, \frac{1}{9}, \frac{2}{9}, \frac{3}{9}, \frac{4}{9}, \frac{5}{9}, \frac{6}{9}\right\}$. This completes the proof.

Lemma 3.3. Let S be a subset of $F_{2 p}$ with $|S|=2 p$ and $\mathcal{Q}(S) \subseteq F_{2 p}$, where p is odd prime.
(1) If S contains no fractions whose denominators are $2 p$ or p, then

$$
S=\left\{0,1, \frac{1}{2 p-1}, \frac{2}{2 p-1} \ldots, \frac{2 p-2}{2 p-1}\right\}
$$

except for $p \in\{3,5\}$. There is an additional set $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{2}{5}\right\}$ for $p=3$ and an additional set $S=\left\{0,1, \frac{1}{6}, \frac{1}{2}, \frac{1}{9}, \frac{2}{9}, \frac{1}{3}, \frac{4}{9}, \frac{5}{9}, \frac{2}{3}\right\}$ for $p=5$.
(2) If S contains fractions whose denominators are $2 p$ and also contains fractions whose denominators are p, then

$$
S \subseteq\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2 p}\right\} \text { or } S \subseteq\left\{0,1, \frac{1}{2 p}, \frac{2}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}
$$

Proof. (1) It is easy to see that $S \subseteq F_{2 p-1}$. If S contains no fractions whose numerators are p, then $\mathcal{Q}(S) \subseteq F_{2 p-1}$. By Theorem 1.3, we have $S=\left\{0,1, \frac{1}{2}, \ldots\right.$, $\left.\frac{1}{2 p-1}\right\}$ or $S=\left\{0,1, \frac{1}{2 p-1}, \ldots, \frac{2 p-2}{2 p-1}\right\}$. Both are impossible since $\frac{1}{p} \notin S$ and $\frac{p}{2 p-1} \notin S$. If S contains fractions whose numerators are p, then we may assume that

$$
S=\left\{0,1, \frac{p}{b_{1}}, \ldots, \frac{p}{b_{t}}, \frac{x_{1}}{y_{1}}, \ldots, \frac{x_{s}}{y_{s}}\right\}
$$

where the fractions are irreducible, $b_{1}<b_{2}<\cdots<b_{t},\left(x_{i} y_{i}, p\right)=1(1 \leq i \leq s)$ and $2+t+s=2 p$. Since $\frac{p}{b_{i}} / \frac{x_{j}}{y_{j}}=\frac{p y_{j}}{b_{i} x_{j}} \in \bar{F}_{2 p}$, we have $y_{j} \mid b_{i}$ or $\left.\frac{y_{j}}{2} \right\rvert\, b_{i}$. Let $d=\left(b_{1}, \ldots, b_{t}\right)$. Then

$$
y_{j} \mid d \text { or } \left.\frac{y_{j}}{2} \right\rvert\, d\left(y_{j} \nmid d\right) .
$$

We may assume that $\left.\frac{y_{i}}{2} \right\rvert\, d$ and $y_{i} \nmid d$ for $1 \leq i \leq k$ and $y_{k+j} \mid d$ for $1 \leq j \leq l$, where $k+l=s$. Let

$$
X_{i}=\frac{x_{i} d}{y_{i} / 2}(1 \leq i \leq k), Y_{j}=\frac{x_{k+j} d}{y_{k+j}}(1 \leq j \leq l)
$$

Then S can be rewritten as

$$
S=\left\{0,1, \frac{p}{b_{1}}, \ldots, \frac{p}{b_{t}}, \frac{X_{1}}{2 d}, \ldots, \frac{X_{k}}{2 d}, \frac{Y_{1}}{d}, \ldots, \frac{Y_{l}}{d}\right\}
$$

where $\left(X_{i}, 2 p\right)=1,\left(Y_{j}, p\right)=1$ and $2+t+k+l=2 p$.
If $t \geq 2$, by $t d \leq b_{t} \leq 2 p-1$, we have $d \leq p-1$. Since $b_{i}>p(1 \leq i \leq t)$, we have $b_{i} \geq(i+1) d$. It follows that $t \leq\left\lfloor\frac{2 p-1}{d}\right\rfloor-1$. By $p<b_{i} \leq 2 p-1$, we can get that

$$
\begin{equation*}
t \leq \min \left\{p-1,\left\lfloor\frac{2 p-1}{d}\right\rfloor-1\right\} . \tag{3.6}
\end{equation*}
$$

If $d=p-1$, then $t \leq 1$, a contradiction. So $d \leq p-2$. It is clear that $X_{i}<2 d$ and $Y_{j}<d$. Hence,

$$
|S| \leq 2+t+d+d-1=t+2 d+1
$$

When $d=1$, it follows from (3.6) that $|S| \leq p+2<2 p$, a contradiction. Hence, $d \geq 2$. And now, $p \geq 5$ and $t \leq\left\lfloor\frac{2 p-1}{d}\right\rfloor-1$. By $2 \leq d \leq p-2$,
$2 p=|S| \leq\left\lfloor\frac{2 p-1}{d}\right\rfloor+2 d \leq \max _{2 \leq d \leq p-2}\left\{\left\lfloor\frac{2 p-1}{d}\right\rfloor+2 d\right\} \leq \max \{p+3,2 p-1\}<2 p$, a contradiction.

If $t=1$, we may write $b_{1}=b$. Then $d=b$. By Lemma 3.2, we know the result holds.
(2) Similar to the proof of Theorem 1.6, we have $S=\left\{1, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\}$ or $S=$ $\left\{1, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$ if $0 \notin S$ and $S=\left\{0, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\}$ or $S=\left\{0, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$ if $1 \notin S$. Now, we assume that $\{0,1\} \subseteq S$. Let

$$
S=\left\{0,1, \frac{a_{1}}{2 p}, \frac{a_{2}}{2 p}, \ldots, \frac{a_{r}}{2 p}, \frac{b_{1}}{p}, \ldots, \frac{b_{t}}{p}, \frac{x_{1}}{2 u_{1}}, \ldots, \frac{x_{s}}{2 u_{s}}, \frac{y_{1}}{v_{1}}, \ldots, \frac{y_{k}}{v_{k}}\right\}
$$

with $r+s+t+k=2 p-2$ and $r, t \geq 1$, where the fractions are irreducible and $\left(u_{i}, p\right)=1(1 \leq i \leq s),\left(v_{j}, 2 p\right)=1(1 \leq j \leq k)$. Since $\frac{b_{i}}{p} / \frac{x_{j}}{2 u_{j}}=\frac{2 u_{j} b_{i}}{p x_{j}} \in \bar{F}_{2 p}$, we have

$$
\begin{equation*}
x_{j} \mid b_{i}, \quad \frac{2 u_{j} b_{i}}{x_{j}} \leq 2 p-2(1 \leq i \leq t, 1 \leq j \leq s) \tag{3.7}
\end{equation*}
$$

Similarly, we can obtain that $x_{j} \mid a_{i}(1 \leq i \leq r, 1 \leq j \leq s)$,

$$
\begin{equation*}
y_{j} \mid a_{i}, 2 \nmid y_{j}, \frac{a_{i} v_{j}}{y_{j}} \leq 2 p-1(1 \leq i \leq r, 1 \leq j \leq k) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{j} \mid b_{i}, \frac{b_{i} v_{j}}{y_{j}} \leq 2 p-1(1 \leq i \leq t, 1 \leq j \leq k) \tag{3.9}
\end{equation*}
$$

If $\left(a_{1}, a_{2}, \ldots, a_{r}\right)=1$ or $\left(b_{1}, b_{2}, \ldots, b_{t}\right)=1$, then $x_{i}=1(1 \leq i \leq s)$ and $y_{j}=1(1 \leq j \leq k)$. By Lemma 3.1, we have $S \subseteq\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\}$ or $S \subseteq$ $\left\{0,1, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$. Now, we assume $\left(a_{1}, a_{2}, \ldots, a_{r}\right)>1$ and $\left(b_{1}, b_{2}, \ldots, b_{t}\right)>$ 1. We will deduce a contradiction.

Without loss of generality, we may assume that $a_{1}<\cdots<a_{r}$ and $b_{1}<$ $\cdots<b_{t}$. Since $\left(a_{1}, a_{2}, \ldots, a_{r}\right) \geq 3$, we have $3(2 r-1) \leq a_{r} \leq 2 p-1$ and so $r \leq \frac{p+1}{3}$. Let $v_{i}^{\prime}=\frac{v_{i} a_{r}}{y_{i}}$ and $v_{i}^{\prime \prime}=\frac{v_{i} b_{t}}{y_{i}}$ for $i \in[1, k]$ and $u_{j}^{\prime \prime}=\frac{2 u_{j} b_{t}}{x_{j}}$ for $j \in[1, s]$. Then S can be rewritten as both

$$
S=\left\{0,1, \frac{a_{1}}{2 p}, \frac{a_{2}}{2 p}, \ldots, \frac{a_{r}}{2 p}, \frac{b_{1}}{p}, \ldots, \frac{b_{t}}{p}, \frac{x_{1}}{2 u_{1}}, \ldots, \frac{x_{s}}{2 u_{s}}, \frac{a_{r}}{v_{1}^{\prime}}, \ldots, \frac{a_{r}}{v_{k}^{\prime}}\right\}
$$

and

$$
S=\left\{0,1, \frac{a_{1}}{2 p}, \frac{a_{2}}{2 p}, \ldots, \frac{a_{r}}{2 p}, \frac{b_{1}}{p}, \ldots, \frac{b_{t}}{p}, \frac{b_{t}}{u_{1}^{\prime \prime}}, \ldots, \frac{b_{t}}{u_{s}^{\prime \prime}}, \frac{b_{t}}{v_{1}^{\prime \prime}}, \ldots, \frac{b_{t}}{v_{k}^{\prime \prime}}\right\} .
$$

By $S \subseteq F_{2 p}$, all of $v_{i}^{\prime \prime}$ s are distinct and larger than a_{r}, all of $u_{i}^{\prime \prime \prime}$'s and $v_{j}^{\prime \prime}$'s are distinct and larger than b_{t}. If $2 \mid b_{t}$, then $2 \mid v_{i}^{\prime \prime}$ since $2 \nmid y_{i}$. By (3.7), (3.9) and $2 \mid u_{j}^{\prime \prime}$ we have
$2 t+2 s+2 k \leq b_{t}+2 s+2 k \leq \max \left(\left\{v_{i}^{\prime \prime}: i \in[1, k]\right\} \cup\left\{u_{j}^{\prime \prime}: j \in[1, s]\right\}\right) \leq 2 p-2$.
This implies that $t+s+k \leq p-1$, and so $r \geq p-1$, contradictory to $r \leq \frac{p+1}{3}$. Hence, $2 \nmid b_{t}$ and $2 \nmid v_{i}^{\prime \prime}$. From $\left(b_{1}, b_{2}, \ldots, b_{t}\right)>1$ we have $b_{t} \geq 3 t$. Since $3 t+1+2(s-1) \leq b_{t}+1+2(s-1) \leq \max \left\{u_{i}^{\prime \prime}: 1 \leq i \leq s\right\} \leq 2 p-2=r+s+t+k$,
we have

$$
\begin{equation*}
2 t+s \leq r+k+1 \tag{3.10}
\end{equation*}
$$

It follows from $2 \nmid v_{i}^{\prime}$ and (3.8) that

$$
3 r+2 k \leq a_{r}+2 k \leq \max \left\{v_{i}^{\prime}: 1 \leq i \leq k\right\} \leq 2 p-1=r+s+t+k+1,
$$

and so

$$
\begin{equation*}
2 r+k \leq s+t+1 \tag{3.11}
\end{equation*}
$$

The inequalities (3.10) and (3.11) give us $r+t \leq 2$. Hence, $r=t=1$ and $b_{1} \geq 3$. Note that $r+s+t+k=2 p-2$. By (3.10) and (3.11), we can obtain that $s=k=p-2$. Therefore, $\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{k}^{\prime \prime}\right\}=\{3,5, \ldots, 2 p-1\} \backslash\{p\}$, which is impossible since $\frac{b_{1}}{3} \notin S$. This completes the proof.

Now, we give the proof of Theorem 1.6 for the case $n=2 p$.
Proof of Theorem 1.6 for $n=2 p$. It is easy to verify that the sufficiency is true. Next, we prove the necessity. Firstly, we deal with the case $p=2$. Since $\frac{1}{3} / \frac{3}{4}=$ $\frac{4}{9} \notin F_{4}, \frac{1}{4} / \frac{2}{3}=\frac{3}{8} \notin \bar{F}_{4}$ and $\frac{2}{3} / \frac{3}{4}=\frac{8}{9} \notin \bar{F}_{4}, S$ can not contain both x and y, where $(x, y) \in\left\{\left(\frac{1}{3}, \frac{3}{4}\right),\left(\frac{1}{4}, \frac{2}{3}\right),\left(\frac{2}{3}, \frac{3}{4}\right)\right\}$. Hence, if $\frac{2}{3} \in S$, then $S \subseteq\left\{0,1, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$. If $\frac{1}{3} \in S$, then $S \subseteq\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}$ or $S \subseteq\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$. If neither $\frac{1}{3}$ nor $\frac{2}{3}$ belong to S, then $S \subseteq\left\{0,1, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right\}$. Therefore, Theorem 1.6 holds for $n=4$. Now, we suppose that $p \geq 3$.

By Lemma 3.3, we just need to consider the following two cases:
(1) S contains fractions whose denominators are $2 p$ but no fraction whose denominator is p;
(2) S contains fractions whose denominators are p but no fraction whose denominator is $2 p$.

Firstly, we deal with the case (1). Similar to the discussion of Theorem 1.6, we have $S=\left\{1, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\}$ or $S=\left\{1, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$ if $0 \notin S$ and $S=$ $\left\{0, \frac{1}{2}, \ldots, \frac{1}{2 p}\right\}$ or $S=\left\{0, \frac{1}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$ if $1 \notin S$. All forms are impossible since $\frac{1}{p} \notin S$. Hence, $\{0,1\} \subseteq S$. Let

$$
S=\left\{0,1, \frac{a_{1}}{2 p}, \frac{a_{2}}{2 p}, \ldots, \frac{a_{r}}{2 p}, \frac{x_{1}}{2 u_{1}}, \ldots, \frac{x_{s}}{2 u_{s}}, \frac{y_{1}}{v_{1}}, \ldots, \frac{y_{k}}{v_{k}}\right\}
$$

with $r \geq 1$ and $r+s+k=2 p-2$, where the fractions are irreducible and $\left(u_{i}, p\right)=1(1 \leq i \leq s),\left(v_{j}, 2 p\right)=1(1 \leq j \leq k)$. By $\frac{a_{i}}{2 p} / \frac{x_{j}}{2 u_{j}}=\frac{a_{i} u_{j}}{p x_{j}} \in \bar{F}_{2 p}$, we have

$$
\begin{equation*}
x_{j} \mid a_{i}, \frac{a_{i} u_{j}}{x_{j}} \leq 2 p-1(1 \leq i \leq r, 1 \leq j \leq s) . \tag{3.12}
\end{equation*}
$$

By $\frac{a_{i}}{2 p} / \frac{y_{j}}{v_{j}}=\frac{a_{i} v_{j}}{2 p y_{j}} \in \bar{F}_{2 p}$, we have

$$
\begin{equation*}
y_{j} \mid a_{i}, \frac{a_{i} v_{j}}{y_{j}} \leq 2 p-1(1 \leq i \leq r, 1 \leq j \leq k) \tag{3.13}
\end{equation*}
$$

Let $\left(a_{1}, a_{2}, \ldots, a_{r}\right)=d$. If $d=1$, then $x_{i}=1(1 \leq i \leq s)$ and $y_{j}=$ $1(1 \leq j \leq k)$. By Lemma 3.1, we have $S \subseteq\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2 p}\right\}$ or $S \subseteq$ $\left\{0,1, \frac{1}{2 p}, \frac{2}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$. Now, we assume that $d>1$.

If $r \geq 2$, then $2 d<\max _{1 \leq i \leq r} a_{i} \leq 2 p-1$, and so $d<p$. Let $S_{1}=S \cup\left\{\frac{d}{p}\right\}$. One can easily prove that $\mathcal{Q}\left(S_{1}\right) \subseteq F_{2 p}$. By $\left|S_{1}\right|=2 p+1$ and Theorem 1.3, we have $S_{1}=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2 p}\right\}$ or $S_{1}=\left\{0,1, \frac{1}{2 p}, \frac{2}{2 p}, \ldots, \frac{2 p-1}{2 p}\right\}$. Both forms are impossible since $\frac{1}{p} \notin S_{1}$. Hence, $r=1$ and $d=a_{1} \geq 3$. Let $X_{i}=\frac{a_{1} u_{i}}{x_{i}}(1 \leq i \leq s)$ and $Y_{j}=\frac{a_{1} v_{j}}{y_{j}}(1 \leq j \leq k)$. Then S can be rewritten as

$$
S=\left\{0,1, \frac{a_{1}}{2 p}, \frac{a_{1}}{2 X_{1}}, \frac{a_{1}}{2 X_{2}}, \ldots, \frac{a_{1}}{2 X_{s}}, \frac{a_{1}}{Y_{1}}, \frac{a_{1}}{Y_{2}}, \ldots, \frac{a_{1}}{Y_{k}}\right\} .
$$

Clearly, all of $2 X_{i}$'s and Y_{j} 's are distinct. By (3.12), (3.13) and $S \subseteq F_{2 p}$, we have $a_{1} / 2<X_{i} \leq 2 p-1,\left(X_{i}, p\right)=1$ and $a_{1}<Y_{j} \leq 2 p-1,\left(Y_{j}, 2 p\right)=1$. Thus,

$$
2 p=|S| \leq 2+\left(2 p-1-\frac{a_{1}-1}{2}\right)+\left(\frac{2 p-1-a_{1}}{2}\right)=3 p+1-a_{1} .
$$

So $a_{1} \leq p+1$. By $\left(a_{1}, 2 p\right)=1$, we have $a_{1}<p$. We observe that for $p<n \leq$ $2 p-1$, if $\left(n, Y_{j}\right)=1$ for some $j \in[1, k]$, then $\frac{a_{1}}{2 n} \notin S$. Otherwise, $\frac{a_{1}}{2 n} / \frac{a_{1}}{Y_{j}}=$ $\frac{Y_{j}}{2 n} \in \bar{F}_{2 p}$ which is impossible since $2 n>2 p$ and $\left(2 n, Y_{j}\right)=1$. Therefore,

$$
\frac{a_{1}}{2\left(2^{\alpha_{j}} Y_{j}+1\right)} \notin S\left(Y_{j} \in\left(a_{1}, p-2\right]\right), \frac{a_{1}}{2\left(Y_{j}-1\right)} \notin S\left(Y_{j} \in[p+2,2 p-1]\right)
$$

where α_{j} is an integer such that $2^{\alpha_{j}} Y_{j} \in[p+1,2 p-2]$. Furthermore, when $2^{\alpha_{j}} Y_{j}>p+1$, we also get that

$$
\begin{equation*}
\frac{a_{1}}{2\left(2^{\alpha_{j}} Y_{j}-1\right)} \notin S . \tag{3.14}
\end{equation*}
$$

Let
$A=\left\{\frac{a_{1}}{2\left(2^{\alpha_{j}} Y_{j}+1\right)}: Y_{j} \in\left(a_{1}, p-2\right]\right\}, B=\left\{\frac{a_{1}}{2\left(Y_{j}-1\right)}: Y_{j} \in[p+2,2 p-1]\right\}$.
Then $|A|+|B|=k$. Since $a_{1} / 2<X_{i} \leq 2 p-1$ and $a_{1} / 2 \leq(2 p-1) / 2<p$, it follows from $\left(X_{i}, p\right)=1$ that

$$
\left\{\frac{a_{1}}{2 X_{1}}, \ldots, \frac{a_{1}}{2 X_{s}}\right\} \subseteq\left\{\frac{a_{1}}{a_{1}+1}, \frac{a_{1}}{a_{1}+3}, \ldots, \frac{a_{1}}{2(2 p-1)}\right\} \backslash\left(A \cup B \cup\left\{\frac{a_{1}}{2 p}\right\}\right) .
$$

Hence, $s \leq 2 p-1-\frac{a_{1}-1}{2}-k-1$. Thus,

$$
2 p=|S| \leq 3+\left(2 p-2-\frac{a_{1}-1}{2}-k\right)+k=2 p+1-\frac{a_{1}-1}{2},
$$

which implies that $a_{1}=3$ and $p \geq 5$. At this point, one can easily get that

$$
\begin{equation*}
S=\left\{0,1, \frac{3}{4}, \frac{3}{6}, \ldots, \frac{3}{2(2 p-1)}, \frac{3}{Y_{1}}, \frac{3}{Y_{2}}, \ldots, \frac{3}{Y_{k}}\right\} \backslash(A \cup B) . \tag{3.15}
\end{equation*}
$$

By $2 p-3>p$ and $(3,2 p-3)=1$, we have $\frac{3}{2(2 p-3)} \notin S$. Since the number of Y_{j} 's with $Y_{j} \in(3, p-2]$ is $\leq \frac{p-5}{2}$, there are at least two odd integers $p+2 \leq m_{1}, m_{2} \leq 2 p-1$ for which $\left\{\frac{3}{2 m_{1}}, \frac{3}{2 m_{2}}\right\} \subseteq S$. Hence, there exists an odd integer $m \in[p+2,2 p-5]$ such that $\frac{3}{2 m} \in S$ and $p \geq 7$. Let

$$
\max \left\{m \in[p+2,2 p-5]: 2 \nmid m, \frac{3}{2 m} \in S\right\}=m_{0}
$$

Then $\frac{3}{2\left(m_{0}+2\right)} \notin S$. By (3.15), we have $m_{0}+2=2^{\alpha_{j}} Y_{j}+1$ for some $Y_{j} \in(3, p-2]$. Since $2^{\alpha_{j}} Y_{j}=m_{0}+1>p+1$, it follows from (3.14) that $\frac{3}{2 m_{0}} \notin S$, contradictory to the definition of m_{0}.

Now, we deal with the case (2). Similarly, we have $\{0,1\} \subseteq S$. Let

$$
S=\left\{0,1, \frac{b_{1}}{p}, \ldots, \frac{b_{t}}{p}, \frac{x_{1}}{2 u_{1}}, \ldots, \frac{x_{s}}{2 u_{s}}, \frac{y_{1}}{v_{1}}, \ldots, \frac{y_{k}}{v_{k}}\right\}
$$

with $t \geq 1$ and $t+s+k=2 p-2$, where the fractions are irreducible and $\left(u_{i}, p\right)=1(1 \leq i \leq s),\left(v_{j}, 2 p\right)=1(1 \leq j \leq k)$. By $\frac{b_{i}}{p} / \frac{x_{j}}{2 u_{j}}=\frac{2 b_{i} u_{j}}{p x_{j}} \in \bar{F}_{2 p}$, we have

$$
x_{j} \mid b_{i}(1 \leq i \leq t, 1 \leq j \leq s)
$$

By $\frac{b_{i}}{p} / \frac{y_{j}}{v_{j}}=\frac{b_{i} v_{j}}{p y_{j}} \in \bar{F}_{2 p}$, we have

$$
y_{j} \mid b_{i} \quad \text { or } \left.\quad \frac{y_{j}}{2} \right\rvert\, b_{i}(1 \leq i \leq t, 1 \leq j \leq k)
$$

Let $\left(b_{1}, \ldots, b_{t}\right)=d$. Then $x_{i} \mid d$ for $1 \leq i \leq s$ and $y_{j} \mid d$ or $\left.\frac{y_{j}}{2} \right\rvert\, d$ for $1 \leq j \leq k$. Suppose that the number of y_{j} 's with $y_{j} \mid d$ is k_{1}, and the number of y_{j} 's with $y_{j} \nmid d$ and $\left.\frac{y_{j}}{2} \right\rvert\, d$ is m. Then $k_{1}+m=k$. Without loss of generality, we may assume that $y_{j} \mid d$ for $1 \leq j \leq k_{1}$. Let $s+k_{1}=l$ and
$X_{i}=\frac{2 u_{i} d}{x_{i}}(1 \leq i \leq s), X_{s+i}=\frac{v_{i} d}{y_{i}}\left(1 \leq i \leq k_{1}\right)$ and $Y_{j}=\frac{2 v_{k_{1}+j} d}{y_{k_{1}+j}}(1 \leq j \leq m)$.
Clearly, we have $2 \nmid Y_{j}$. Then S can be rewritten as

$$
S=\left\{0,1, \frac{b_{1}}{p}, \ldots, \frac{b_{t}}{p}, \frac{d}{X_{1}}, \ldots, \frac{d}{X_{l}}, \frac{2 d}{Y_{1}}, \ldots, \frac{2 d}{Y_{m}}\right\}
$$

Assume that $b_{1}<b_{2}<\cdots<b_{t}$. Then $t d \leq b_{t} \leq p-1$ and so $t \leq \frac{p-1}{d}$. For $1 \leq i \leq l$, by $\frac{b_{t}}{p} / \frac{d}{X_{i}}=\frac{b_{t} X_{i}}{p d} \in \bar{F}_{2 p}$, we have

$$
\begin{equation*}
\frac{b_{t} X_{i}}{d} \leq 2 p-1(1 \leq i \leq l) \tag{3.16}
\end{equation*}
$$

For $1 \leq j \leq m$, by $\frac{b_{t}}{p} / \frac{2 d}{Y_{j}}=\frac{b_{t} Y_{j}}{2 p d} \in \bar{F}_{2 p}$, we have that, if $2 d \mid b_{t}$, then

$$
\begin{equation*}
\frac{b_{t} Y_{j}}{2 d} \leq 2 p-1 \tag{3.17}
\end{equation*}
$$

if $2 d \nmid b_{t}$, then

$$
\begin{equation*}
\frac{b_{t} Y_{j}}{d} \leq 2 p-1 \tag{3.18}
\end{equation*}
$$

We distinguish into two cases according to $2 \leq t \leq \frac{p-1}{d}$ and $t=1$.
Case 1. $2 \leq t \leq \frac{p-1}{d}$. By (3.16), (3.17), (3.18) and $S \subseteq F_{2 p}$, we have

$$
\begin{equation*}
d<X_{i} \leq\left\lfloor\frac{2 p-1}{t}\right\rfloor(1 \leq i \leq l), 2 d<Y_{j} \leq\left\lfloor\frac{2(2 p-1)}{t}\right\rfloor(1 \leq j \leq m) \tag{3.19}
\end{equation*}
$$

It follows from $2 \nmid Y_{j}$ that

$$
|S| \leq 2+t+\left(\frac{2 p-1}{t}-d\right)+\left(\frac{2 p-1}{t}-d+\frac{1}{2}\right)=\frac{2(2 p-1)}{t}+t-2 d+\frac{5}{2} .
$$

If $d \geq 2$, then $2 \leq t \leq \frac{p-1}{2}$ and $p \geq 5$. It follows that

$$
|S| \leq \frac{2(2 p-1)}{t}+t-\frac{3}{2} \leq \max \left\{\frac{2(2 p-1)}{t}+t: t \in\left\{2, \frac{p-1}{2}\right\}\right\}-\frac{3}{2}<2 p
$$

a contradiction. Thus, $d=1$. At this point, we have $2 \leq t \leq p-1$ and

$$
2 p=|S| \leq \frac{2(2 p-1)}{t}+t+\frac{1}{2}
$$

If $3 \leq t \leq p-1$, then $p \geq 5$ and $\frac{2(2 p-1)}{t}+t+\frac{1}{2}<2 p$, a contradiction. Hence, $t=2$. Since $Y_{j} \neq p$, it follows from (3.19) and $d=1$ that

$$
2 p=|S| \leq 4+(p-1-d)+(p-d-1)=4+(p-2)+(p-2)=2 p
$$

This shows that $l=m=p-2$, and so $\left\{X_{1}, X_{2}, \ldots, X_{l}\right\}=\{2,3, \ldots, p-1\}$ and $\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}=\{3,5, \ldots, 2 p-1\} \backslash\{p\}$. By (3.16), we get $b_{2} \leq 2$. So $\left\{b_{1}, b_{2}\right\}=\{1,2\}$. Therefore,

$$
S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{p}, \frac{2}{3}, \frac{2}{5}, \ldots, \frac{2}{2 p-1}\right\}=\left\{0,1, \frac{2}{3}, \frac{2}{4}, \ldots, \frac{2}{2 p}\right\}
$$

Case 2. $t=1$. In this case, $d=b_{1}$. By (3.16), (3.18) and $S \subseteq F_{2 p}$, we have $b_{1}<X_{i} \leq 2 p-1, X_{i} \neq p(1 \leq i \leq l)$ and $2 b_{1}<Y_{j} \leq 2 p-1,\left(2 p, Y_{j}\right)=1(1 \leq$ $j \leq m)$. Note that for $p<n \leq 2 p-1$, if $\left(n, Y_{j}\right)=1$ for some $j \in[1, m]$, then $\frac{b_{1}}{n} \notin S$. Otherwise, $\frac{b_{1}}{n} / \frac{2 b_{1}}{Y_{j}}=\frac{Y_{j}}{2 n} \in \bar{F}_{2 p}$ which is impossible since $\left(2 n, Y_{j}\right)=1$ and $2 n>2 p$. By similar discussion with case (1), we have $\frac{b_{1}}{2^{\alpha_{j}} Y_{j}+1} \notin S$ for $2 b_{1}<Y_{j}<p$ and $\frac{b_{1}}{Y_{j}-1} \notin S$ for $p<Y_{j} \leq 2 p-1$, where α_{j} is the integer such that $p<2^{\alpha_{j}} Y_{j}<2 p$. Moreover, if $2^{\alpha_{j}} Y_{j}>p+1$, then

$$
\begin{equation*}
\frac{b_{1}}{2^{\alpha_{j}} Y_{j}-1} \notin S \tag{3.20}
\end{equation*}
$$

and if $p<Y_{j}+1<2 p$, then

$$
\begin{equation*}
\frac{b_{1}}{Y_{j}+1} \notin S \tag{3.21}
\end{equation*}
$$

Let

$$
A_{1}=\left\{\frac{b_{1}}{2^{\alpha_{j}} Y_{j}+1}: 2 b_{1}<Y_{j}<p\right\}, B_{1}=\left\{\frac{b_{1}}{Y_{j}-1}: p<Y_{j} \leq 2 p-1\right\}
$$

and

$$
S_{1}=\left\{0,1, \frac{b_{1}}{b_{1}+1}, \frac{b_{1}}{b_{1}+2}, \ldots, \frac{b_{1}}{2 p-1}, \frac{2 b_{1}}{Y_{1}}, \frac{2 b_{1}}{Y_{2}}, \ldots, \frac{2 b_{1}}{Y_{m}}\right\} \backslash\left(A_{1} \cup B_{1}\right)
$$

Clearly, $S \subseteq S_{1}$. Since all Y_{j} 's are odd, we have $A \cap B=\emptyset$, and so $\left|A_{1}\right|+\left|B_{1}\right|=$ m. Hence,

$$
2 p=|S| \leq\left|S_{1}\right|=2+\left(2 p-1-b_{1}-m\right)+m=2 p+1-b_{1}
$$

This shows that $b_{1}=1$ and $l=2 p-3-m$. And now,

$$
\begin{equation*}
S=S_{1}=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2 p-1}, \frac{2}{Y_{1}}, \ldots, \frac{2}{Y_{m}}\right\} \backslash\left(A_{1} \cup B_{1}\right) . \tag{3.22}
\end{equation*}
$$

For $p=3$, by $2=2 b_{1}<Y_{j} \leq 2 p-1=5$ and $1=\left(Y_{j}, 2 p\right)=\left(Y_{j}, 6\right)$, we have $m \leq 1$. When $m=0$, (3.22) implies that $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right\}$. When $m=1$, we have $Y_{1}=5$. It follows from (3.22) that $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{2}{5}\right\}$.

Let $p \geq 5$. Since $\left|A_{1}\right|=\left|\left\{Y_{j}: Y_{j} \in(2, p-2]\right\}\right| \leq \frac{p-3}{2}$, there is at least one odd integer $a \in[p+2,2 p-1]$ such that $\frac{1}{a} \in S$. We will show that $\frac{1}{2 p-1} \in S$. Assume that $\frac{1}{2 p-1} \notin S$, then there is an odd integer $a \in[p+2,2 p-3]$ for which $\frac{1}{a} \in S$. Let

$$
\max \left\{a \in[p+2,2 p-3]: 2 \nmid a, \frac{1}{a} \in S\right\}=a_{0} .
$$

Then $\frac{1}{a_{0}+2} \notin S$. By the definition of A_{1} and (3.22), we have $a_{0}+2=2^{\alpha_{j}} Y_{j}+1$ for some $Y_{j} \in(2, p-2]$. However, since $a_{0}=2^{\alpha_{j}} Y_{j}-1>p$, it follows from (3.20) that $\frac{1}{a_{0}} \notin S$, a contradiction with the definition of a_{0}. Thus, $\frac{1}{2 p-1} \in S$. Similarly, we can prove that $\frac{1}{2 p-3} \in S$ if $\left|\left\{Y_{j}: Y_{j} \in(2, p-2]\right\}\right| \leq \frac{p-5}{2}$.

Subcase 2.1. $\left|\left\{Y_{j}: Y_{j} \in(2, p-2]\right\}\right|=\frac{p-3}{2}$. In this case,

$$
\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{p}, \frac{1}{2 p-1}, \frac{2}{3}, \frac{2}{5}, \ldots, \frac{2}{p-2}\right\} \subseteq S
$$

By $\frac{1}{2 p-1} / \frac{2}{2 p-3}=\frac{2 p-3}{2(2 p-1)} \notin \bar{F}_{2 p}$ and $\frac{1}{p+3} / \frac{2}{3}=\frac{3}{2(p+3)} \notin \bar{F}_{2 p}$, we have $\frac{2}{2 p-3} \notin S$ and $\frac{1}{p+3} \notin S$, respectively. By (3.22) and the definitions of A_{1} and B_{1}, we obtain $\frac{1}{2 p-4} \in S$ and $\frac{2}{p+4} \in S$. Thus,

$$
\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{p}, \frac{1}{2 p-1}, \frac{1}{2 p-4}, \frac{2}{3}, \frac{2}{5}, \ldots, \frac{2}{p-2}, \frac{2}{p+4}\right\} \subseteq S
$$

For $p=5$, the cardinality of the left set above is $10=2 p$. Therefore, $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{9}, \frac{2}{3}, \frac{2}{9}\right\}$.

By $\frac{2}{2 p-3} \notin S$ and $\frac{2}{p+4} \in S$, we have $p \neq 7$. For $p \geq 11$, let

$$
\max \left\{Y_{j}: Y_{j} \in[p+2,2 p-5]\right\}=Y
$$

One should notice that such Y does exist since $p+4<2 p-5$ and $\frac{2}{p+4} \in S$. Then $\frac{2}{Y+2} \notin S$. By (3.22), we have $\frac{1}{Y+1} \in S$. However, it follows from $p<Y+1<2 p$ and (3.21) that $\frac{1}{Y+1} \notin S$, a contradiction.

Subcase 2.2. $\left|\left\{Y_{j}: Y_{j} \in(2, p-2]\right\}\right| \leq \frac{p-5}{2}$. In this case, $\left\{\frac{1}{2 p-1}, \frac{1}{2 p-3}\right\} \subseteq S$. Since $\frac{1}{2 p-1} / \frac{2}{2 p-3}=\frac{2 p-3}{2(2 p-1)} \notin \bar{F}_{2 p}$ and $\frac{1}{2 p-3} / \frac{2}{2 p-1}=\frac{2 p-1}{2(2 p-3)} \notin \bar{F}_{2 p}$, both $\frac{2}{2 p-3}$ and $\frac{2}{2 p-1}$ do not belong to S.

Now, we prove that $m=0$. If $\left|\left\{Y_{j}: Y_{j} \in[p+2,2 p-1]\right\}\right| \geq 1$, then we can deduce a contradiction by similar discussion with Subcase 2.1. Hence, $\left|\left\{Y_{j}: Y_{j} \in[p+2,2 p-1]\right\}\right|=0$. By (3.22), we have $\frac{1}{p+3} \in S$. If $\mid\left\{Y_{j}: Y_{j} \in\right.$ $(2, p-2]\} \mid \geq 1$, let

$$
\min \left\{2^{\alpha_{j}} Y_{j}+1: Y_{j} \in(2, p-2]\right\}=2^{\alpha_{j}} Y_{j_{0}}+1
$$

Then $2^{\alpha_{j_{0}}} Y_{j_{0}}+1=p+2$. Otherwise, $2^{\alpha_{j_{0}}} Y_{j_{0}}-1 \geq p+2$. From (3.20), we deduce that $\frac{1}{2^{\alpha_{j_{0}}} Y_{j_{0}}-1} \notin S$ which contradicts with (3.22). At this point, by $\frac{1}{p+3} / \frac{2}{Y_{j_{0}}}=\frac{Y_{j_{0}}}{2(p+3)} \in F_{2 p}$, we have $\left(Y_{j_{0}}, p+3\right)>1$, which is impossible since $\left(2^{\alpha_{j 0}} Y_{j_{0}}, p+3\right)=(p+1, p+3)=2$. Thus, $\left|\left\{Y_{j}: Y_{j} \in(2, p-2]\right\}\right|=0$, and so $m=0$. Therefore, $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2 p-1}\right\}$. This completes the proof for the case $n=2 p$.

References

[1] R. Balasubramanian and K. Soundararajan, On a conjecture of R. L. Graham, Acta Arith. 75 (1996), no. 1, 1-38. https://doi.org/10.4064/aa-75-1-1-38
[2] R. Boyle, On a problem of R. L. Graham, Acta Arith. 34 (1977/78), no. 2, 163-177. https://doi.org/10.4064/aa-34-2-163-177
[3] Y. F. Cheng and C. Pomerance, On a conjecture of R. L. Graham, Rocky Mountain J. Math. 24 (1994), no. 3, 961-975. https://doi.org/10.1216/rmjm/1181072382
[4] R. L. Graham, Unsolved problem 5749, Amer. Math. Mon. 77 (1970), 775.
[5] M. Szegedy, The solution of Graham's greatest common divisor problem, Combinatorica 6 (1986), no. 1, 67-71. https://doi.org/10.1007/BF02579410
[6] W. Y. Vélez, Some remarks on a number theoretic problem of Graham, Acta Arith. 32 (1977), no. 3, 233-238. https://doi.org/10.4064/aa-32-3-233-238
[7] L. Wang, Farey sequence and Graham's conjectures, J. Number Theory 229 (2021), 399404. https://doi.org/10.1016/j.jnt.2020.10.013
[8] R. Winterle, A problem of R. L. Graham in combinatorial number theory, in Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1970), 357-361, Louisiana State Univ., Baton Rouge, LA, 1970.
[9] A. Zaharescu, On a conjecture of Graham, J. Number Theory 27 (1987), no. 1, 33-40. https://doi.org/10.1016/0022-314X (87) 90048-5

Xing-Wang Jiang

Department of Mathematics
Luoyang Normal University
Luoyang 471934, P. R. China
Email address: xwjiangnj@sina.com
Ya-Li Li
School of Mathematics and Statistics
Henan University
Kaifeng 475001, P. R. China
Email address: njliyali@sina.com

[^0]: Received June 9, 2022; Revised March 3, 2023; Accepted March 30, 2023.
 2020 Mathematics Subject Classification. Primary 11A05, 11B57.
 Key words and phrases. Farey sequences, Graham's conjectures.
 This work was supported by the National Natural Science Foundations of China, Grant Nos. 12171243,11901156 and 12201281, and the Natural Science Foundation of Youth of Henan Province, Grant No. 222300420245.

