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Aα-SPECTRAL EXTREMA OF GRAPHS WITH GIVEN SIZE

AND MATCHING NUMBER

Xingyu Lei, Shuchao Li, and Jianfeng Wang

Abstract. In 2017, Nikiforov proposed the Aα-matrix of a graph G.

This novel matrix is defined as

Aα(G) = αD(G) + (1− α)A(G), α ∈ [0, 1],

where D(G) and A(G) are the degree diagonal matrix and adjacency
matrix of G, respectively. Recently, Zhai, Xue and Liu [39] considered

the Brualdi-Hoffman-type problem for Q-spectra of graphs with given

matching number. As a continuance of it, in this contribution we consider
the Brualdi-Hoffman-type problem for Aα-spectra of graphs with given

matching number. We identify the graphs with given size and matching

number having the largest Aα-spectral radius for α ∈ [ 1
2
, 1).

1. Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G).
The number |E(G)| is called the size of G and is denoted by m(G). In this
paper, all the graphs considered are simple and undirected. Unless otherwise
stated, we follow the traditional notation and terminology; see [1, 3].

For a vertex v ∈ V (G), let NG(v) be the neighborhood of v in G. Denote
by dG(v) := |NG(v)| the degree of v in G. Here, as elsewhere, we drop the
index referring to the underlying graph if the reference is clear. The number
∆(G) := max{d(v) | v ∈ V (G)} is the maximum degree of G. For a graph G
with a vertex subset S ⊆ V (G), denote by G[S] the subgraph of G induced by
S.

For V1 ⊆ V (G), E1 ⊆ E(G), let G − V1, G − E1 be the graphs formed from
G by deleting the vertices in V1 and their incident edges, the edges in E1,
respectively. For convenience, denote G − {v} and G − {uv} by G − v and
G− uv, respectively. Similarly, G+ uv is obtained from G by adding the edge
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uv ̸∈ E(G). For two graphs G and H, we define G ∪ H to be their disjoint
union. In addition, we use kG to denote the disjoint union of k copies of G.

Given a graph G with V (G) = {v1, . . . , vn}, its adjacency matrix A(G) is
an n × n 0-1 matrix whose (i, j)-entry is 1 if and only if vivj ∈ E(G). Let
D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix whose diagonal entries are
the vertex degrees in G. The matrix Q(G) = D(G) + A(G) is the well-known
signless Laplacian matrix of G.

In 2017, Nikiforov [25] introduced the Aα-matrix of a graph G, which is a
linear convex combination of D(G) and A(G), i.e.,

Aα(G) = αD(G) + (1− α)A(G), α ∈ [0, 1].

Obviously,

(1) A(G) = A0(G), Q(G) = 2A 1
2
(G) and D(G) = A1(G).

The eigenvalues of Aα(G) are called the Aα-eigenvalues of G, and the max-
imum modulus among them, denoted by λ(G), is called the Aα-spectral radius
of G.

The silent rise of research on Aα-spectra attracts more and more researchers’
attention. One’s study on Aα-spectra gradually becomes a mainstream issue
in spectral graph theory. It is interesting, important and challenging. Liu, Das
and Shu [23] presented several upper and lower bounds on the kth largest eigen-
value of Aα-matrix and characterized the extremal graphs corresponding to
some of these obtained bounds. For more results on bounds of Aα-eigenvalues,
one may be referred to [7,8,15,17,27,31,32,40]. Cardoso, Pastén, and Rojo [5]
studied the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant
vertices. This problem was extended to the signed graph by Belardo, Brunetti,
and Ciampella [2]. Wang, Fang, Geng, and Tian [30] considered the multiplic-
ity of an arbitrary Aα-eigenvalue of a connected graph. For more results along
this line, we refer the readers to [20,35,37]. There is a rich study on the relation
between the Aα-eigenvalues of a (di)graph with various parameters; see [14] for
Aα-spectral radius and the size of G with 1

2 ⩽ α ⩽ 1, [26] for Aα-spectral
radius and diameter, [9, 13] for Aα-spectral radius, size, and diameter, [36] for
Aα-spectral radius and clique number, [21] for Aα-spectral radius and number
of cut vertices, [33, 34] for Aα-spectral radius and parameters of digraphs.

The spectrum, Spec(G) of a graph G is the set of eigenvalues together with
their multiplicities of the corresponding matrix, sayM, associated with G. Two
graphs are called M -cospectral if they share the same M -spectrum. A graph G
is said to be determined by the spectrum (DS for short), if any cospectral graph
of G is isomorphic to G. A graph G is said to be determined by the generalized
M -spectrum (DGMS for short), if any graph H satisfying Spec(G) = Spec(H)
and Spec(Ḡ) = Spec(H̄), is isomorphic to G, where H̄ and Ḡ denote the
complement of H and G, respectively. In fact, it is tough to determine whether
a graph isDS (resp.DGMS) in general. Lin, Liu, Xue [22] showed that lollipop
graph is determined by its Aα-spectrum for 0 < α < 1 and the friendship
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graph is determined by its Aα-spectrum for 1
2 < α < 1. Li and Sun [16] gave

a simple arithmetic condition for an α-controllable graph G being DGAαS for
0 ⩽ α < 1. Li andWang [19] gave a simple criterion for an almost α-controllable
graph G being DGAαS for 0 ⩽ α < 1.

In 1985, Brualdi and Hoffman proposed the following extremal spectral prob-
lem:

Problem 1 (Brualdi-Hoffman Problem). How to determine the graphs of size
m having the largest A0-spectral radius?

This problem was studied by Brualdi and Hoffman [4], Friedland [11], Rowl-
inson [28] and Stanley [29]. Surprisingly if one adds some more constraints, for
example among graphs of given size and order, the Brualdi-Hoffman problem
becomes much more difficult. In fact, for any positive integers m and n, the
Brualdi-Hoffman problem for graphs of order n and size m is still open. We
refer the reader to the recent article [18] and in the references cited therein
for the advances on this open problem. It is still interesting to consider the
Brualdi-Hoffman problem under some other constraints.

Matching theory is fundamental in graph theory, and it has many important
applications in theoretical chemistry and combinatorial optimization (see [24]).
A subset S of E(G) is called a matching if any two members of S are not adja-
cent in G. The matching number µ(G) is the size of a maximum matching in G.
A vertex is saturated by a matching M if it is incident with an edge of M . The
matching number of a graph has a close relationship with spectral parameters.
Feng, Yu, and Zhang [10] identified the graph with given matching number
having the largest A0-spectral radius. Yu [38] characterized the graph with
given matching number having the largest A 1

2
-spectral radius of graphs. Chen

and Huang [6] determined the n-vertex extremal graphs with given matching
number having maximum Aα-spectral radius for 0 ⩽ α < 1. Lin, Huang, and
Xue [21] characterized the n-vertex trees with given matching number having
the largest Aα-spectral radius for 0 ⩽ α < 1. Very recently, Zhai, Xue and
Liu [39] identified the graph with given size and matching number having the
largest A 1

2
-spectral radius.

Motivated directly from [6,21,39], we consider the following Brualdi-Hoffman
problem with the additional matching constraint.

Problem 2. How can we determine the graphs with given size and matching
number having the largest Aα-spectral radius for 0 ⩽ α ⩽ 1?

In order to formulate our main result, we need to introduce some notation.
Let G µ

m be the set of graphs of size m and matching number µ, and let G ⩾µ
m be

the set of graphs with size m and matching number at least µ. We use Fr,s,t to
denote the firefly graph of size m, which is obtained from r triangles, s pendant
paths of length 1 and t pendant paths of length 2 by sharing a common vertex;
see Figure 1.



876 X. Y. LEI, S. C. LI, AND J. F. WANG

tv1
tu1♣♣♣t stv3 tu3♣♣♣t tt
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Figure 1. The firefly graph Fr,s,t with some labeled vertices,
where 3r + 2t+ s = m.

Note that, among G 1
m, it is straightforward to determine the graphs having

the largest Aα-spectral radius. On the other hand, A1(G) = D(G). When
µ ⩾ 2 and α ∈ [ 12 , 1), Problem 2 is solved in the following theorem.

Theorem 1.1. Let G be in G ⩾µ
m having the largest Aα-spectral radius, where

µ ⩾ 2 and α ∈ [ 12 , 1). Then G is isomorphic to Fr,s,t (s ⩾ 1) with possibly
some isolated edges and isolated vertices, and the matching number of G is µ.
Moreover,

(i) if m ⩾ 3µ− 1, then r = µ− 1, s = m− 3µ+ 3 and t = 0;
(ii) if m ⩽ 3µ− 2 and m− µ is even, then r = m−µ

2 , s = 1 and t = 0;

(iii) if m ⩽ 3µ− 2 and m− µ is odd, then r = m−µ−1
2 and s = t = 1.

The proof techniques in the paper for our main result follow the idea of
Zhai, Xue and Liu [39]. Together with some new ideas we make the proofs
work. The remaining part of our paper is organized as follows: In the next
section we recall some important known results. In Section 3, we give some
structure lemmas. In Section 4, we give the proof of Theorem 1.1. In the last
section, we give some brief comments on our contribution and propose some
further research questions.

2. Some preliminaries

In this section, we provide some known lemmas that will be used in the
subsequent sections.

Let B be a real matrix whose rows and columns are indexed by V =
{1, . . . , n}. Assume that B can be written as

B =

B11 · · · B1k

...
. . .

...
Bk1 . . . Bkk


according to partition V = V1 ∪ · · · ∪ Vk, wherein Bij denotes the submatrix
(block) of B formed by the rows in Vi and the columns in Vj . Let cij denote
the average row sum of Bij . Then the matrix C = (cij) is called the quotient
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matrix of B. If the row sum of each block Bij is a constant, then the partition
is called equitable and C is called the equitable quotient matrix of B.

Lemma 2.1 ([3]). Let B be a nonnegative matrix and C be the equitable quo-
tient matrix of B. Then ρ(C) = ρ(B), where ρ(C) and ρ(B) are the spectral
radii of C and B, respectively.

Lemma 2.2 ([12]). If B is a nonnegative matrix, then there is a nonnegative
nonzero vector u such that Bu = ρ(B)u, where ρ(B) is the spectral radius of
B.

Since Aα-matrix is a nonnegative matrix for α ∈ [0, 1], there exists a non-
negative nonzero unit vector x such that Aα(G)x = λ(G)x. We call x the
principal eigenvector of Aα(G) for α ∈ [0, 1]. For convenience, let xv denote
the coordinate of x such that xv corresponds to the vertex v ∈ V (G). By a
direct calculation, one has

(2) λ(G)xv = αd(v)xv + (1− α)
∑

uv∈E(G)

xu

for all v ∈ V (G) and α ∈ [0, 1].

Lemma 2.3 ([25]). Let x be the principal eigenvector of Aα(G) with α ∈ [0, 1).

(i) If G is connected, then x is positive.
(ii) If H is any proper subgraph of a connected graph G, then λ(G) > λ(H).

Assume that H is a connected graph with |V (H)| ⩾ 3 and let G ∼= H ∪
aK2 ∪ bK1 (a, b ⩾ 0). Then λ(G) = λ(H) and λ(G)x = Aα(G)x for x =
(x|TH , 0, 0, . . . , 0)T , where x|H is the principal eigenvector of Aα(H). Since H is
connected, x|H is a positive vector by Lemma 2.3 and we get the next corollary.

Corollary 2.4. Let H be a connected graph with |V (H)| ⩾ 3 and let G ∼=
H ∪ aK2 ∪ bK1. If Aα(G)x = λ(G)x (0 ⩽ α < 1), then xv > 0 for all
v ∈ V (H).

Lemma 2.5 ([14]). For two graphs G and H with the same order, assume
that the principal eigenvectors of Aα(G) and Aα(H) are x and y, respectively.
Then

xT (Aα(G))y =
∑

uv∈E(G)

[α(xuyu + xvyv) + (1− α)(xuyv + xvyu)]

and
xTy(λ(H)− λ(G)) = xT (Aα(H)−Aα(G))y.

Lemma 2.6 ([25]). Let G be a graph with the maximum degree ∆ ⩾ 1. If
α ∈ [ 12 , 1), then λ(G) ⩾ α∆+ (1− α)2/α.

If ∆ ⩾ 3 and α ∈ [ 12 , 1), then we have [(∆+1)α−2](2α−1)
2α ⩾ 0, i.e., α∆ +

(1−α)2

α ⩾ 1
2 (∆ + 1). Then we get the next lemma.
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Lemma 2.7. Let G be a graph with the maximum degree ∆ ⩾ 3. If α ∈ [ 12 , 1),

then λ(G) ⩾ 1
2 (∆ + 1).

3. Some key lemmas

In this section, we give some structure lemmas. The first one describes the
effect of a graph transformation on the Aα-spectral radius.

Lemma 3.1. Let G be a graph and let x be the principal eigenvector of Aα(G)
for α ∈ (0, 1). Assume that u1u2 ∈ E(G), v1v2 /∈ E(G) and xu1

⩾ xu2
, xv1 ⩾

xv2 . If xv1 > 0 and xvi ⩾ xui for i = 1, 2, then λ(G− u1u2 + v1v2) > λ(G).

Proof. It is obvious that x is nonnegative. Note that xvi ⩾ xui
for i = 1, 2.

Hence, we obtain x2
vi ⩾ x2

ui
and xv1xv2

⩾ xu1
xu2

. Let G′ = G − u1u2 + v1v2.
Then, for α ∈ (0, 1), by Rayleigh quotient, we have

λ(G′)− λ(G) ⩾ xT (Aα(G
′)−Aα(G))x

=
∑

uv∈E(G′)

[α(x2
u + x2

v) + 2(1− α)xuxv]

−
∑

uv∈E(G)

[α(x2
u + x2

v) + 2(1− α)xuxv]

= α(x2
v1 + x2

v2 − x2
u1

− x2
u2
) + 2(1− α)(xv1xv2 − xu1xu2)

⩾ 0.

Hence, λ(G′) ⩾ λ(G).
Suppose that λ(G′) = λ(G). Then λ(G′) = xTAα(G

′)x, and so x is also
the principal eigenvector of Aα(G

′). Since {v1, v2} ̸= {u1, u2}, we have v1 /∈
{u1, u2} or v2 /∈ {u1, u2}. Without loss of generality, assume that v2 /∈ {u1, u2}.
Then dG′(v2) = dG(v2) + 1. By xv1 > 0 and α ∈ (0, 1), we get

λ(G′)xv2 = αdG′(v2)xv2 + (1− α)
∑

w∈NG′ (v2)

xw

= αdG(v2)xv2
+ αxv2 + (1− α)

∑
w∈NG(v2)

xw + (1− α)xv1

> αdG(v2)xv2 + (1− α)
∑

w∈NG(v2)

xw

= λ(G)xv2 ,

which contradicts λ(G′) = λ(G). Thereby, λ(G′) > λ(G).
This completes the proof. □

Next we define a special matching for a graph G. Then we describe the
relation between this matching and the principal eigenvector of Aα(G).
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Definition 3.1. Let G be a graph and let x be the principal eigenvector of
Aα(G). A maximum matching M∗ := {u1v1, u2v2, . . . , uµ(G)vµ(G)} of G is said
to be extremal (with respect to x) if∑
uivi∈M∗

[α(x2
ui
+x2

vi)+2(1−α)xuixvi ] = max
M

∑
uv∈M

[α(x2
u+x2

v)+2(1−α)xuxv],

where M takes over all the maximum matchings of G.

The next lemma establishes a relation between the principle eigenvector and
an extremal matching.

Lemma 3.2. Let G be a graph among G ⩾µ
m having the largest Aα-spectral

radius, α ∈ (0, 1). Let M∗ be an extremal matching of G and let V ∗ denote
the set of vertices saturated by M∗. Then xw ⩽ minv∈V ∗ xv for any vertex
w ∈ V (G)\V ∗.

Proof. Assume that u1v1 ∈ M∗ satisfying xu1
= minv∈V ∗ xv. Then it suffices

to show that xw ⩽ xu1
for all vertices w in V (G)\V ∗. In what follows, we

prove it by contradiction. Suppose that xw > xu1 .
If wv1 ∈ E(G), then for α ∈ (0, 1), we have∑

uivi∈M∗

[α(x2
ui

+ x2
vi) + 2(1− α)xuixvi ] <

∑
uv∈(M∗\{u1v1})

∪{wv1}

[α(x2
u + x2

v) + 2(1− α)xuxv],

which contradicts the definition of M∗.
If wv1 /∈ E(G), then let G′ = G−u1v1+wv1. Obviously, G′ ∈ G ⩾µ

m . Bearing
in mind that the principal eigenvector x is nonnegative, we have xw > xu1

⩾ 0.
By Lemma 3.1 we get λ(G′) > λ(G), which contradicts the maximality of λ(G).

This completes the proof. □

Recall the following definition, which orders the edges in an extremal match-
ing of G.

Definition 3.2 ([39]). Assume that M∗ is an extremal matching. Then one
may arrange the edges of M∗ with respect to x as u1v1, u2v2, . . . , uµ(G)vµ(G)

such that the followings hold:

(i) For i = 1, . . . , µ(G), xvi ⩾ xui ;
(ii) For i = 1, . . . , µ(G)− 1, xvi ⩾ xvi+1 , and xui ⩾ xui+1 if xvi = xvi+1 .

The upper ordering of the edges in M∗ is said to be proper with respect to x.

In what follows, we always assume that the order of the edges in M∗ is
proper with respect to the principal eigenvector x of Aα(G). By Definition 3.2
and Lemma 3.2, we have xv1 = maxv∈V (G) xv. Since x (̸= 0) is nonnegative,
one has xv1 > 0.

The following lemma describes the local structure of the graph in G ⩾µ
m having

the largest Aα-spectral radius.
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Lemma 3.3. Let G be a graph among G ⩾µ
m having the largest Aα-spectral ra-

dius, where µ ⩾ 2 and α ∈ (0, 1). Assume that x is the principal eigenvector of
Aα(G) and M∗ is an extremal matching of G whose edges are ordered properly
with respect to x. For 1 ⩽ i < j ⩽ µ(G), we have xui ⩾ xvj if and only if
G[{ui, vi, uj , vj}] ∼= 2K2 or K4.

Proof. (⇒) For 1 ⩽ i < j ⩽ µ(G), assume that xui ⩾ xvj and let H =
G[{ui, vi, uj , vj}]. Suppose H ≇ 2K2. Then E(H)\{uivi, ujvj} ≠ ∅ and there
exists an edge uv ∈ E(H)\{uivi, ujvj}. If xu = 0, then from (2), we have xw =
0 for all w ∈ NG(u). Therefore, v1 /∈ NG(u) by xv1 > 0. Let G′ = G−uv+uv1.
Clearly, M∗ ⊆ E(G′) and so G′ ∈ G ⩾µ

m . By xv1 ⩾ xv and Lemma 3.1, we get
λ(G′) > λ(G), a contradiction. So, xu > 0.

By (2), we have

λ(G)xw = αdG(w)xw + (1− α)
∑

w′∈NG(w)

xw′ ⩾ (1− α)xu > 0

for all w ∈ NG(u), and so xw > 0.
Suppose that vivj /∈ E(H). As uv ∈ E(H)\{uivi, ujvj}, we have uv =

uivj , uiuj or viuj . Let G
′′ = G− uv + vivj . Then G′′ ∈ G ⩾µ

m . From Definition
3.2, we have xvi ⩾ xui

, xvj ⩾ xuj
. Then λ(G′′) > λ(G) (based on Lemma 3.1).

Therefore, vivj ∈ E(H) and H is connected. By xu > 0, we have xw > 0 for
all w ∈ V (H).

We first consider that uiuj /∈ E(H). Due to (M∗(G)\{uivi, ujvj}) ∪
{uiuj , vivj} is a matching of G− vjuj +uiuj , then µ(G− vjuj +uiuj) ⩾ µ(G).
By xui

⩾ xvj
and Lemma 3.1, we have λ(G − vjuj + uiuj) > λ(G), a contra-

diction. Hence, uiuj ∈ E(H).
Now we consider uivj or viuj /∈ E(H). In this subcase, we have µ(G−uiuj+

uivj) ⩾ µ(G) and µ(G − uiuj + viuj) ⩾ µ(G). By xvj ⩾ xuj , xvi ⩾ xui and
Lemma 3.1, we have λ(G−uiuj+uivj) > λ(G) and λ(G−uiuj+viuj) > λ(G),
a contradiction. Hence, uivj , viuj ∈ E(H). It follows that H ∼= K4.

(⇐) Conversely, assume that H ∼= 2K2 or K4 and suppose xui < xvj . If
H ∼= 2K2, let G

′′′ = G− uivi − ujvj + uiuj + vivj . Then µ(G′′′) ⩾ µ(G), and
so G′′′ ∈ G ⩾µ

m . Moreover, for α ∈ (0, 1), one has

λ(G′′′)− λ(G) ⩾ xT (
Aα(G

′′′)−Aα(G)
)
x

= [α(x2
ui

+ x2
uj
) + 2(1− α)xuixuj + α(x2

vi + x2
vj ) + 2(1− α)xvixvj ]

− [α(x2
ui
+x2

vi) + 2(1− α)xuixvi + α(x2
vj + x2

uj
) + 2(1− α)xvjxuj ]

= 2(1− α)(xvj − xui)(xvi − xuj ).

In view of Definition 3.2, we have xvi ⩾ xvj
⩾ xuj

. If xvi = xuj
, then

xvi = xvj . By Definition 3.2, we have xvi ⩾ xui ⩾ xuj . Then xvi = xuj = xui .
Together with xvj = xvi , we have xvj = xui , a contradiction to xui < xvj .
Thus, xvi > xuj

. Together with xui
< xvj and α ∈ (0, 1), one has

(3) λ(G′′′)− λ(G) ⩾ 2(1− α)(xvj − xui)(xvi − xuj ) > 0,
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a contradiction. So, xui
⩾ xvj .

IfH ∼= K4, letM = (M∗\{uivi, ujvj})∪{uiuj , vivj}. ThenM is a maximum
matching of G. However, from the above discussion and α ∈ (0, 1), we have

α(x2
ui

+ x2
uj
) + 2(1− α)xui

xuj
+ α(x2

vi + x2
vj ) + 2(1− α)xvixvj

> α(x2
ui

+ x2
vi) + 2(1− α)xuixvi + α(x2

vj + x2
uj
) + 2(1− α)xvjxuj ,

which contradicts that M∗ is extremal. So, xui
⩾ xvj . □

Let M∗ and V ∗ be the same as those defined in Lemma 3.2. Since xv1 =
maxv∈V (G) xv, we have a partition E(G) = E1(G) ∪ E2(G), where

(4) E1(G) = M∗ ∪ {v1v | v ∈ NG(v1)}, E2(G) = E(G)\E1(G).

The next lemma also describes the local structure of the graph in G ⩾µ
m having

the largest Aα-spectral radius.

Lemma 3.4. Let G be a graph among G ⩾µ
m having the largest Aα-spectral radius

and let x be the principal eigenvector of Aα(G), where µ ⩾ 2 and α ∈ (0, 1). If
E2(G) ̸= ∅, then H1 ⊆ G or H2 ⊆ G, where H1 = K4 − e, e is an edge of K4

and H2 is the graph obtained by attaching one pendant edge to each vertex of
a cycle C3. Furthermore, for each edge uv in E(G)\(M∗ ∪ E(Hi)) (i = 1, 2),
one has v1 is incident with uv, or {u, v} ⊆ NG(v1).

Proof. By Lemma 3.2 and Definition 3.2, we have xv1 = maxv∈V (G) xv > 0 and
xv2 = maxw∈V (G)\{u1,v1} xw. Let uv ∈ E2(G). Then u, v ̸= v1. If u1 is incident
with the edge uv, then without loss of generality assume that u = u1. Hence,
v ̸= u1 and so xv ⩽ maxw∈V (G)\{u1,v1} xw = xv2 . If u1 is not incident with the
edge uv, then we get xu, xv ⩽ maxw∈V (G)\{u1,v1} xw = xv2 ⩽ xv1 . Suppose that
v1v2 /∈ E(G). By xv1 > 0 and Lemma 3.1, we have λ(G− uv + v1v2) > λ(G).
Since G− uv+ v1v2 ∈ G ⩾µ

m , we get a contradiction to the maximality of λ(G).
Hence, v1v2 ∈ E(G) and G[{u1, v1, u2, v2}] ≇ 2K2.

We first consider xv2 ⩽ xu1
. Then by Lemma 3.3, we have G[{u1, v1, u2, v2}]

∼= K4. So, H1 ⊆ G.
Next we consider xv2 > xu1

⩾ 0. Then xv2
= maxw∈V (G)\{v1} xw and

max{xu1 , xv3} = maxw∈V (G)\{v1,v2,u2} xw. Note that uv ∈ E2(G). Hence,
u, v ̸= v1 and |{u, v} ∩ {u2, v2}| ⩽ 1. If |{u, v} ∩ {u2, v2}| = 1, set u ∈ {u2, v2}.
We get xu ⩽ xv2 , xv ⩽ maxw∈V (G)\{v1,v2,u2} xw = max{xu1 , xv3}. If |{u, v} ∩
{u2, v2}| = 0, then xu, xv ⩽ maxw∈V (G)\{v1,v2,u2} xw = max{xu1

, xv3} ⩽ xv2 .
If max{xu1 , xv3} = xu1 , we may obtain v2u1 ∈ E(G) and u2v1 ∈ E(G). In

fact, if v2u1 ̸∈ E(G), then G − uv + v2u1 ∈ G ⩾µ
m . By Lemma 3.1, we have

λ(G− uv+ v2u1) > λ(G), a contradiction. If u2v1 ̸∈ E(G), then µ(G− u2v2 +
u2v1) ⩾ µ(G) and λ(G− u2v2 + u2v1) > λ(G), a contradiction. Therefore, one
obtains H1 ⊆ G.

If max{xu1 , xv3} = xv3 , by a similar discussion as above, we have v2v3 ∈
E(G) and v1v3 ∈ E(G), and so H2 ⊆ G.
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Now we prove the second part of our result. Suppose that v1 is not incident
with uv and {u, v} ⊈ NG(v1). Then, without loss of generality, assume that
v is not in NG(v1). Thus, µ(G − uv + v1v) ⩾ µ(G). By Lemma 3.1, we have
λ(G− uv + v1v) > λ(G), a contradiction. Hence, either uv is an edge incident
to v1 or {u, v} ⊆ NG(v1). □

Our last lemma in what follows describes the global structure of the graphs
among G ⩾µ

m having the largest Aα-spectral radii, µ ⩾ 2 and α ∈ [ 12 , 1).

Lemma 3.5. Let G be a graph in G ⩾µ
m having the largest Aα-spectral radius,

where µ ⩾ 2 and α ∈ [ 12 , 1). Then G ∼= Fr,s,t (s ⩾ 1) with possibly some isolated
edges and isolated vertices, where Fr,s,t is depicted in Figure 1.

Proof. Let x be the principal eigenvector of Aα(G). Let M∗ be an extremal
matching of G with respect to x. Assume that v1u1, . . . , vµ(G)uµ(G) are all
the edges in M∗ with the proper order. By Lemma 3.2, we have xv1

=
maxv∈V ∗ xv = maxv∈V (G) xv. Then in view of (4), we may let Ei = Ei(G)
for i ∈ {1, 2}. If E2 = ∅, then our result follows immediately. So we suppose
E2 ̸= ∅ in what follows. We proceed by considering the following two possible
cases.

Case 1. m(G) ⩾ µ(G) + 5.
In this case, we consider two graphs G1 and G2, which are defined as

G1 = G ∪ |E2|K1, G2 = G− E2 + {v1wi | i = 1, . . . , |E2|}.

Let x1 =
(
xT , 0, 0, . . . , 0

)T
, where the number of extended zero-components

is |E2|. Evidently, λ(G1) = λ(G) and x1 is the principal eigenvector of Aα(G1).
Recall that m(G) ⩾ µ(G) + 5. Hence, |E(G)\M∗| ⩾ 5. Since u1v1 ∈ E(G2)
and all the edges of E(G)\M∗ are incident to v1 in G2, we have dG2

(v1) ⩾ 6.
By Lemma 2.7, we have λ(G2) ⩾ 7

2 for α ∈ [ 12 , 1).
Let y be the principal eigenvector of Aα(G2) with coordinate yv correspond-

ing to v ∈ V (G2). By Lemma 2.5, we have

xT
1 y (λ(G2)− λ(G1))

= xT
1 (Aα(G2)−Aα(G1))y

=
∑

uv∈E(G2)

[α(xuyu + xvyv) + (1− α)(xuyv + xvyu)]

−
∑

uv∈E(G1)

[α(xuyu + xvyv) + (1− α)(xuyv + xvyu)]

=
∑

i=1,...,|E2|

[α(xv1yv1 + xwi
ywi

) + (1− α)(xv1ywi
+ xwi

yv1)]

−
∑

uv∈E2

[α(xuyu + xvyv) + (1− α)(xuyv + xvyu)],(5)
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where

(6) xwi
= 0, xu ⩽ xv1 , xv ⩽ xv1

for each uv ∈ E2. Note that each wi is a pendant vertex of G2. Hence,
λ(G2)ywi = αywi + (1− α)yv1 , and so

(7) ywi
=

(1− α)yv1

λ(G2)− α

for i = 1, 2, . . . , |E2|. Notice that v1 belongs to the unique connected component
H of G2 other than an isolated vertex or an isolated edge and |V (H)| ⩾ 7 (since
dG2

(v1) ⩾ 6). Hence, we have yv1 > 0 by Corollary 2.4.
On the other hand, we have dG2(v) ⩽ 2 for all v ∈ V (G2)\{v1}. Let yv∗ =

maxv∈V (G2)\{v1} yv. Then

λ(G2)yv∗ = αdG2
(v∗)yv∗ + (1− α)

∑
v∈NG2

(v∗)

yv ⩽ 2αyv∗ + (1− α)(yv∗ + yv1),

and so yv∗ ⩽
(1−α)yv1

λ(G2)−1−α . For all uv ∈ E2,

(8) yu ⩽ yv∗ ⩽
(1− α)yv1

λ(G2)− 1− α
, yv ⩽ yv∗ ⩽

(1− α)yv1
λ(G2)− 1− α

.

Combining (5), (6), (7) and (8) gives us

xT
1 y[λ(G2)− λ(G1)] ⩾ [α(xv1yv1 + 0) + (1− α)(xv1

(1− α)yv1
λ(G2)− α

+ 0)]|E2|

− [α(xv1yv∗ + xv1yv∗) + (1− α)(xv1yv∗ + xv1yv∗)]|E2|

⩾

(
α+

(1− α)2

λ(G2)− α

)
|E2|xv1yv1 − 2(1− α)

λ(G2)− 1− α
|E2|xv1yv1

=
αλ2(G2)− (α2 + α+ 1)λ(G2) + 3α− 1

(λ(G2)− α)(λ(G2)− α− 1)
|E2|xv1yv1 .(9)

By E2 ̸= ∅, xv1 = maxv∈V (G) xv > 0 and yv1 > 0, we get |E2|xv1yv1 > 0.

Since λ(G2) ⩾ 7
2 , we have λ(G2)− α > 0 and λ(G2)− α− 1 > 0 for α ∈ [ 12 , 1).

By the definition of G2, we know that the size of G2 is equal to that of G
and µ(G2) = µ(G). Therefore, G2 ∈ G ⩾µ

m . Based on the maximality of λ(G),
we have λ(G2) ⩽ λ(G) = λ(G1). Together with (9), we obtain αλ2(G2) −
(α2 + α+ 1)λ(G2) + 3α− 1 ⩽ 0. By some calculations, for α ∈ [ 12 , 1), one has
α2+α+1

2α = 1
2 (α+ 1

α +1) ⩽ 7
4 ,

1
2α

√
α4 + 2α3 − 9α2 + 6α+ 1 ⩽

√
33
4 and 2α ⩾ 1.

So we obtain

λ(G2) ⩽
(α2 + α+ 1) +

√
α4 + 2α3 − 9α2 + 6α+ 1

2α
⩽

7 +
√
33

4
<

7

2
,

which contradicts λ(G2) ⩾ 7
2 .

Case 2. m(G) ⩽ µ(G) + 4. In this case, let ΨG(λ) denote the characteristic
polynomial of Aα(G). Note that E2 ̸= ∅. By Lemma 3.4, we have H1 ⊆ G or
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H2 ⊆ G. Hence, m(G) ⩾ µ(G) + 3. We proceed by considering the following
two possible subcases.

Subcase 2.1. m(G) = µ(G) + 3. In this subcase, G is isomorphic to ei-
ther H1 or H2 with possibly some isolated edges and isolated vertices. Hence,
λ(G) = λ(H1) or λ(G) = λ(H2) holds. Consider the equitable quotient ma-

trix of Aα(Hi) (i = 1, 2), we get λ(H1) =
1
2 (4α + 1 +

√
16α2 − 32α+ 17) and

λ(H2) = α+ 1 +
√
α2 − 2α+ 2. Let f(α) = λ(H2)− λ(H1). Then

f(α) =
1

2

(
−2α+ 1 + 2

√
α2 − 2α+ 2−

√
16α2 − 32α+ 17

)
.

Clearly, f(α) is a real function in α. By some calculations, we get

f ′(α) = − (α− 1)(8l1(α)− 2l2(α)) + l1(α)l2(α)

l1(α)l2(α)
, f ′′(α) = −8l31(α)− 8l32(α)

l31(α)l
3
2(α)

,

where l1(α) = 2
√
α2 − 2α+ 2 and l2(α) =

√
16α2 − 32α+ 17. As α ∈ [ 12 , 1),

we have

l1(α) > 0, l2(α) > 0, l21(α)− l22(α) = −3(2α− 3)(2α− 1) ⩾ 0.

Then, l1(α) − l2(α) ⩾ 0, and so f ′′(α) ⩽ 0. This shows that f ′(α) is a
monotonically decreasing function in α for α ∈ [ 12 , 1). On the other hand,

f ′( 12 ) =
1
5 (3

√
5− 5) > 0 and f ′(1) = −1 < 0. Hence, for α ∈ [ 12 , 1),

f(α) ⩾ min

{
f

(
1

2

)
, f (1)

}
= 0.

Thereby, λ(H2) ⩾ λ(H1).
Now we consider a graph G′ which is a disjoint union of F1,2,0 and µ − 2

isolated edges, i.e., G′ ∼= F1,2,0 ∪ (µ − 2)K2. We proceed by showing that
G′ ∈ G ⩾µ

m and λ(G′) > λ(G).
In fact, µ(G′) = µ(G) and m(G′) = µ(G′)+3 = m(G). Hence, G′ is in G ⩾µ

m .
Additionally, it is easy to see that λ(G′) = λ(F1,2,0). By a direct calculation,
we have

ΨF1,2,0
(x) = (x−α)(x−3α+1)[x3− (6α+1)x2+(5α2+13α−4)x−10α2+2].

Hence, for α ∈ [ 12 , 1), one has

ΨF1,2,0

(
α+ 1 +

√
5

4

)
= − 1

8
(1 +

√
5

4
)(2− 2α+

√
5

4
)
(
(16 + 16

√
5)α2

− (2 + 20
√
5)α+ 7

√
5− 4

)
< 0,

and so

λ(G′) = λ(F1,2,0) > α+ 1 +

√
5

4
⩾ α+ 1 +

√
α2 − 2α+ 2 = λ(H2) ⩾ λ(G),

a contradiction.
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Subcase 2.2.m(G) = µ(G)+4. Consider the graph G′′ = F1,3,0∪(µ−2)K2.
Evidently, µ(G′′) = µ(G) and m(G′′) = µ(G′′)+ 4 = m(G). Hence, G′′ ∈ G ⩾µ

m .
Since K1,5 is a proper subgraph of F1,3,0, we have, for α ∈ [ 12 , 1),

(10) λ(G) ⩾ λ(G′′) = λ(F1,3,0) > λ(K1,5) = 3α+
√

9α2 − 10α+ 5 ⩾ 3.

If K4 ⊆ G, then G is isomorphic to K4 with possibly some isolated edges
and isolated vertices. However, λ(G) = λ(K4) = 3, which contradicts that
λ(G) > 3. Thus, K4 ⊈ G. Note that E2 ̸= ∅. Hence, by Lemma 3.4, one has
H1 ⊆ G or H2 ⊆ G.

We proceed by considering the following two subcases to prove that G ∼=
H3 ∪ aK2 ∪ bK1 or G ∼= H4 ∪ aK2 ∪ bK1, where H3 is obtained from H1 by
adding one pendant edge to a 3 degree vertex of H1, and H4 is obtained from
H2 by adding an edge to connect two vertices of distance 2 in H2.

• H1 ⊆ G. Consider an edge uv ∈ E(G)\(E(H1) ∪ M∗). By the proof
of Lemma 3.4 and K4 ⊈ G, we get G[v1, u1, v2, u2] ∼= H1 and u1u2 /∈ E(G).
So, uv ̸= u1u2. Then we have {u, v} ⊈ NG(v1). By Lemma 3.4, the edge uv
is incident to v1. Without loss of generality, assume that u = v1. Suppose
that v is saturated by an edge, say ujvj , in M∗ for some j ⩾ 3. Let H =
G[{u1, v1, uj , vj}]. Since v1v ∈ E(H) \ {u1v1, ujvj}, we have H ≇ 2K2. Note
that K4 ⊈ G. Hence, we get H ≇ K4. By Lemma 3.3, we have xu1

< xvj , and
so xvj > 0. Together with Lemma 3.1, one obtains λ(G− v2u1+ v2vj) > λ(G).

Note that G − v2u1 + v2vj ∈ G ⩾µ
m . Hence we obtain a contradiction. Thus

v /∈ V ∗ and v1v is a pendant edge. Therefore, G is isomorphic to H3 with
possibly some isolated edges and isolated vertices.

• H2 ⊆ G. By the proof of Lemma 3.4, we have v1v2, v2v3, v1v3 ∈ E(H2).
Consider an edge uv ∈ E(G) \ (E(H2) ∪ M∗). Then u, v ∈ V ∗. Otherwise,
without loss of generality, assume that v /∈ V ∗. By Lemma 3.2, we have
xv ⩽ xu2 . Together with xu ⩽ xv1 and Lemma 3.1, we have λ(G − uv +
v1u2) > λ(G). As G − uv + v1u2 is in G ⩾µ

m , we obtain a contradiction. If
u is saturated by an edge, say ujvj , in M∗ for some j ⩾ 4, then we get
{u, v} ⊈ NG(v1). By Lemma 3.4, the edge uv is incident to v1 and so v = v1.
Therefore, G[{u2, v2, uj , vj}] ∼= 2K2. By Lemma 3.3, we get xu2

⩾ xu. By
Lemma 3.1, one has λ(G−uv1+u2v1) > λ(G). Together with G−uv1+u2v1 ∈
G ⩾µ
m , we obtain a contradiction. So, u ∈ {u1, u2, u3, v1, v2, v3}. Similarly,

we have v ∈ {u1, u2, u3, v1, v2, v3}. Since v1v2, v2v3, v1v3 ∈ E(H2), we have
uv /∈ {vivj | 1 ⩽ i < j ⩽ 3}. Recall that either uv is incident to v1 or {u, v} ⊆
NG(v1), we get uv /∈ {uiuj | 1 ⩽ i < j ⩽ 3}. It follows that u ∈ {u1, u2, u3}
and v ∈ {v1, v2, v3}. Thus, G is isomorphic to H4 with possibly some isolated
edges and isolated vertices.

Clearly, H3 ⊆ H4, and so λ(H3) < λ(H4). By calculations, the characteristic
polynomial of H4 is

ΨH4
(x) = x6 − 14αx5 + l3(α)x

4 + l4(α)x
3 + l5(α)x

2 + l6(α)x+ l7(α),
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where

l3(α) = 71α2 + 14α− 7,

l4(α) = −(158α3 + 128α2 − 70α+ 4),

l5(α) = 149α4 + 366α3 − 186α2 − 6α+ 6,

l6(α) = −(48α5 + 366α4 − 108α3 − 92α2 + 34α− 2),

l7(α) = 112α5 + 12α4 − 70α3 + 15α2 + 4α− 1.

For x ⩾ λ(K1,5) = 3α +
√
9α2 − 10α+ 5, we show that the ith derivative

function Ψ
(i)
H4

(x) of ΨH4
(x) is positive, i = 1, . . . , 5. In fact, by an elementary

calculation, one may deduce that

Ψ
(5)
H4

(x) = 240(3x− 7α) ⩾ 240
(
9α+ 3

√
9α2 − 10α+ 5− 7α

)
> 0.

This shows that the fourth derivative function Ψ
(4)
H4

(x) is a monotonically in-
creasing function in x for x ⩾ λ(K1,5). Therefore,

Ψ
(4)
H4

(x) ⩾ Ψ
(4)
H4

(λ(K1,5))=24
(
20α

√
9α2 − 10α+ 5 + 131α2 − 136α+ 68

)
> 0.

This implies that the third derivative function Ψ
(3)
H4

(x) is a monotonically in-
creasing function in x for x ⩾ λ(K1,5). So,

Ψ
(3)
H4

(x) ⩾ Ψ
(3)
H4

(λ(K1,5))

= 12
(
(82α2 − 72α+ 36)

√
9α2 − 10α+ 5 + (167α2 − 180α+ 93)α− 2

)
> 12

(
(82α2 − 72α+ 36)

√
9α2 − 10α+ 5− 2

)
> 0.

Hence, we obtain the second derivative function Ψ
(2)
H4

(x) is a monotonically
increasing function in x for x ⩾ λ(K1,5), and so

Ψ
(2)
H4

(x) ⩾ Ψ
(2)
H4

(λ(K1,5))

= 2
(
((282α2 − 280α+ 158)α− 12)

√
9α2 − 10α+ 5

+ ((995α2 − 1734α+ 1578)α− 702)α+ 171
)

> 2(−12
√
5− 114 + 171) > 0.

Thus, the derivative function Ψ
(1)
H4

(x) is a monotonically increasing function in

x for x ⩾ λ(K1,5). Recall α ∈ [ 12 , 1). So,

Ψ
(1)
H4

(x) ⩾ Ψ
(1)
H4

(λ(K1,5))

= 2
(
(((167α2 − 238α+ 190)α− 62)α+ 11)

√
9α2 − 10α+ 5

+ (((477α2 − 927α+ 979)α− 570)α+ 206)α− 29
)

> 2
(
(105α2−62α+11)

√
9α2 − 10α+ 5 + (528α2−570α+206)α− 29

)
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> 2
(
6
√
2 + 52α− 29

)
> 0.

Therefore, we obtain that ΨH4(x) is a monotonically increasing function in x
for x ⩾ λ(K1,5). On the other hand,

(11) ΨH4
(x) ⩾ ΨH4

(λ(K1,5)) = 2l8(α)
√

9α2 − 10α+ 5 + l9(α),

where

l8(α) = 63α5 − 107α4 + 115α3 − 74α2 + 36α− 9,

l9(α) = 378α6 − 820α5 + 927α4 − 524α3 + 116α2 + 40α− 21.

Clearly, both l8(α) and l9(α) are real functions in α. By some calculations and
α ∈ [ 12 , 1), we obtain

l′8(α) =
(
(315α2 − 428α+ 345)α− 148

)
α+ 36 > 199α2 − 148α+ 36 > 0,(12)

l′′′9 (α) = 24[(1890α2 − 2050α+ 927)α− 131] > 371α− 131 > 0.(13)

Hence, for α ∈ [ 12 , 1), (12) gives us l8(α) ⩾ l8(
1
2 ) > 0, whereas (13) gives us

l′′9 (α) ⩾ l′′9 (
1
2 ) > 0. Consequently, l′9(α) ⩾ l′9(

1
2 ) > 0 by α ∈ [ 12 , 1). Thus,

l9(α) ⩾ l9(
1
2 ) > 0 from α ∈ [ 12 , 1). Hence, in view of (11), one has ΨH4

(x) ⩾
ΨH4

(λ(K1,5)) > 0. So,

λ(G) ⩽ λ(H4) < 3α+
√
9α2 − 10α+ 5,

which contradicts (10). This completes the proof. □

4. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1, which identifies the graphs
in G ⩾µ

m having the largest Aα-spectral radius for µ ⩾ 2 and α ∈ [ 12 , 1).

Proof of Theorem 1.1. Assume that G is in G ⩾µ
m (µ ⩾ 2) having the largest

Aα-spectral radius. Let x be the principal eigenvector of Aα(G) for α ∈ [ 12 , 1).
From Lemma 3.5, G ∼= Fr,s,t (s ⩾ 1) (see Figure 1) with b isolated edges and
some isolated vertices. Let ∆(G) = dG(v1) and let u1v1 be a pendant edge.
Then µ(G) = r + t+ b+ 1. We proceed by showing three claims, as follows.

Claim 1. xv1 = maxv∈V (G) xv and xv1 > 0.

Proof of Claim 1. Note that u1v1 is a pendant edge. If dG(v1) ⩽ 2, then Fr,s,t

is a path of length at most three. Clearly, xv1 = maxv∈V (G) xv. If dG(v1) ⩾ 3,
one has λ(G) ⩾ 2 by Lemma 2.7. Moreover, for any vertex v ∈ V (G)\{v1},
dG(v) ⩽ 2. Let xv0 = maxv∈V (G)\{v1} xv. Then

λ(G)xv0 = αdG(v0)xv0 + (1− α)
∑

v∈NG(v0)

xv ⩽ 2αxv0 + (1− α)(xv0 + xv1).

By λ(G) ⩾ 2 and α ∈ [ 12 , 1), we have xv0 ⩽
(1−α)xv1

λ(G)−1−α ⩽ xv1 . Therefore, xv1 =

maxv∈V (G) xv. Since x is a nonnegative nonzero vector, we get xv1 > 0. □
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Claim 2. t ⩽ 1. Furthermore, if s ⩾ 2, then t = 0 and b = 0.

Proof of Claim 2. Suppose that t ⩾ 2. Then let v1viui and v1vjuj be two
pendant paths of length 2. Consider a new graph G′ = G−uivi−ujvj+uiuj+
vivj . Clearly, µ(G

′) = µ(G). So, G′ ∈ G ⩾µ
m . By a similar discussion as that of

(3), one has

λ(G′)− λ(G) ⩾ 2(1− α)(xvj − xui
)(xvi

− xuj
),

in which xvi = xvj , xui
= xuj

. By

(14) λ(G)xuj
= αxuj

+ (1− α)xvj ,

we have

xui = xuj =
1− α

λ(G)− α
xvj < xvj = xvi

for λ(G) ⩾ 2 and α ∈ [ 12 , 1). So, xvj
− xui

> 0, xvi
− xuj

> 0. We have
λ(G′) > λ(G), a contradiction. Hence, t ⩽ 1.

Next, we consider the case of s ⩾ 2. Suppose t = 1. Then let v1vjuj be a
pendant path of length 2. Similar to (14), by Claim 1, we have

λ(G)− α

1− α
xu1

= xv1
⩾ xvj =

λ(G)− α

1− α
xuj

.

So, xu1
⩾ xuj

and xu1
=

(1−α)xv1

λ(G)−α > 0. By Lemma 3.1, one has λ(G− vjuj +

vju1) > λ(G). Clearly, µ(G− vjuj + vju1) = µ(G). Hence, G− vjuj + vju1 ∈
G ⩾µ
m . We get a contradiction to the maximality of λ(G). Thereby, t = 0.
Suppose that b ⩾ 1 and let viui be an isolated edge. Then

xu1
=

1− α

λ(G)− α
xv1 ⩾

1− α

λ(G)− α
xvi = xui

.

By Lemma 3.1, we obtain λ(G−viui+viu1) > λ(G). From µ(G−viui+viu1) =
µ(G), we have G− viui + viu1 ∈ G ⩾µ

m . Then we get a contradiction. So, b = 0.
The claim holds. □

Note that G is in G ⩾µ
m . Hence, µ(G) ⩾ µ. In fact, we have the following

claim.

Claim 3. µ(G) = µ.

Proof of Claim 3. Suppose that µ(G) ⩾ µ + 1. It suffices to show that there
exists some graph G′′ in G ⩾µ

m such that λ(G′′) > λ(G). If t ⩾ 1, let G′′ =
G − uv + v1v, where v1uv is a pendant path of length 2 and v is a pendant
vertex. Then µ(G′′) = µ(G)− 1 ⩾ µ. So, G′′ ∈ G ⩾µ

m . By xu ⩽ xv1 and Lemma
3.1, we get λ(G′′) > λ(G), a contradiction. Hence, t = 0.

If b ⩾ 1, let G′′ = G − uv + v1v, where uv is an isolated edge. Then
µ(G′′) = µ(G)− 1 ⩾ µ. That is, G′′ ∈ G ⩾µ

m . By a similar discussion as above,
λ(G′′) > λ(G), a contradiction. We get b = 0.

By t = b = 0, we have µ(G) = r + 1. Since µ(G) ⩾ µ + 1 and µ ⩾ 2,
we obtain r ⩾ 2. Assume that {v1, u2, v2} induces a triangle in G. Let G′′ =
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G − u2v2 + v1w, where w is an isolated vertex. Then µ(G′′) = µ(G) − 1 ⩾ µ

and so G′′ ∈ G ⩾µ
m . By a simple calculation, xu2 = xv2 =

(1−α)xv1

λ(G)−1−α and xw = 0.

We have

λ(G′′)− λ(G) ⩾ xT (Aα(G
′′)−Aα(G))x

= α(x2
v1 + x2

w − x2
v2 − x2

u2
) + 2(1− α)(xv1xw − xv2xu2)

= αx2
v1 − 2x2

v2 =

(
α− 2(1− α)2

(λ(G)− 1− α)2

)
x2
v1

=
αλ(G)2 − 2α(α+ 1)λ(G) + α3 + 5α− 2

(λ(G)− 1− α)2
x2
v1 .

Recall r ≥ 2, we have dG(v1) ⩾ 5. Therefore, K1,5 is a proper subgraph of G.
Consequently, by Lemma 2.3,

(15) λ(G) > λ(K1,5) = 3α+
√

9α2 − 10α+ 5.

For α ∈ [ 12 , 1), λ(G)− 1− α > 0. By the maximality of λ(G), we have

αλ(G)2 − 2α(α+ 1)λ(G) + α3 + 5α− 2 ⩽ 0.

Thereby, λ(G) ⩽ (1 + α) + (1 − α)
√

2
α . Note that 2α > 0, (1 − α)

√
2
α > 0.

Recall α ∈ [ 12 , 1). Then,

(2α)2 −

(
(1− α)

√
2

α

)2

=
2(α2 + 1)(2α− 1)

a
⩾ 0.

Hence, we get 2α− (1− α)
√

2
α ⩾ 0. Then,

λ(K1,5)− λ(G) ⩾ 3α+
√
9α2 − 10α+ 5− (1 + α)− (1− α)

√
2

α

=
√
9α2 − 10α+ 5− 1 +

(
2α− (1− α)

√
2

α

)
⩾
√
9α2 − 10α+ 5− 1

> 0,

i.e., λ(K1,5) > λ(G). That contradicts (15). Hence, µ(G) = µ. □

By Claim 3, we obtain that G is also in G µ
m having the largest Aα-spectral

radius, where µ ⩾ 2 and α ∈ [ 12 , 1). Then µ = 1 + r + t+ b. We complete our
proof by considering the following two possible cases.

Case 1. m ⩾ 3µ− 1. By m = 3r+ s+2t+ b and µ = 1+ r+ t+ b, we have

t+ 2b+ 2− s ⩽ 0.

So, s ⩾ 2. By Claim 2, we have t = b = 0. Then r = µ − 1. Hence,
s = m− 3r = m− 3µ+ 3 and we get (i).
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Case 2. m ⩽ 3µ− 2. By m = 3r+ s+2t+ b and µ = 1+ r+ t+ b, we have

t+ 2b+ 1− s ⩾ 0.

Suppose that s ⩾ 2. By Claim 2, we have t = b = 0. Then t + 2b + 1 − s =
1 − s < 0, a contradiction. Hence, s = 1 and so m − µ = t + 2r. By Claim
2, we obtain t ∈ {0, 1}. If m − µ is odd, we get t is odd, i.e., t = 1. Then
r = m−µ−1

2 and b = −m+3µ−3
2 . If m− µ is even, we get t = 0 and so r = m−µ

2 ,

b = −m+3µ−2
2 . Therefore, (ii) and (iii) hold. □

5. Concluding remarks

In this paper we characterized the graphs among G ⩾µ
m having the largest Aα-

spectral radius. In fact, the matching number of the corresponding extremal
graph is µ. Hence, the following result is a direct consequence of Theorem 1.1.

Corollary 5.1. Let G be in G µ
m having the largest Aα-spectral radius, where

µ ⩾ 2 and α ∈ [ 12 , 1). Then G is isomorphic to Fr,s,t (s ⩾ 1) with possibly
some isolated edges and isolated vertices. Moreover,

(i) if m ⩾ 3µ− 1, then r = µ− 1, s = m− 3µ+ 3 and t = 0;
(ii) if m ⩽ 3µ− 2 and m− µ is even, then r = m−µ

2 , s = 1 and t = 0;

(iii) if m ⩽ 3µ− 2 and m− µ is odd, then r = m−µ−1
2 and s = t = 1.

In view of (1), the signless Laplacian matrix Q is equal to 2A 1
2
(G). Hence,

the following result is also a direct consequence of Theorem 1.1.

Corollary 5.2. Let G be in G ⩾µ
m (µ ⩾ 2) having the largest Q-spectral radius.

Then G is isomorphic to Fr,s,t (s ⩾ 1) with possibly some isolated edges and
isolated vertices, and the matching number of G is µ. Moreover,

(i) if m ⩾ 3µ− 1, then r = µ− 1, s = m− 3µ+ 3 and t = 0;
(ii) if m ⩽ 3µ− 2 and m− µ is even, then r = m−µ

2 , s = 1 and t = 0;

(iii) if m ⩽ 3µ− 2 and m− µ is odd, then r = m−µ−1
2 and s = t = 1.

By Corollary 5.2, we may deduce the main result [39, Theorem 1.1], which
characterizes the graphs among G µ

m (µ ⩾ 2) having the largest Q-spectral ra-
dius.

In fact, it is also interesting to determine the graphs among G ⩾µ
m (µ ⩾ 2)

having the second largest Aα-spectral radius. We will do it in the near future.
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