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PRODUCTS OF COMPOSITION, DIFFERENTIATION AND
MULTIPLICATION FROM THE CAUCHY SPACES TO THE
ZYGMUND SPACE

RiTA A. HIBSCHWEILER

ABSTRACT. In this paper, we study products of composition, multipli-
cation and differentiation acting on the fractional Cauchy spaces and
mapping into the Zygmund space. Characterizations are provided for
boundedness and compactness of these operators.

1. Introduction

For a > 0, the space F, is defined as the collection of functions f analytic
in the unit disc U = {z € C : |z| < 1} of the form

(1) 16) = | e dnte)

where 1 varies over complex-valued Borel measures on T'= {z € C : |z| = 1}.
The space is normed by

£l 7, = inf [l
where the infimum extends over all measures p participating in the integral
representation of f. The families F,, have been studied extensively [3].
The Zygmund space Z is the set of functions analytic in U for which

1£llz = 1£(0)] + £ (0)] + 31615(1 — 2" (2)] < oo.

Let H(U) denote the space of functions analytic in U. Let ® be an analytic
self-map of U. The composition operator Cg is defined by Ce(f) = fo ®
for f € HWU). A function ¥ € H(U) induces the multiplication operator
My (f) = 0f for f € H{U). Finally the differentiation operator D is defined
by D(f) = f’. The operators to be studied here are products of Cy, My and
D, acting on functions f € F,,. Characterizations are provided on the inducing
symbols ® and ¥ so that the associated operators are bounded or compact.
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2. The operators DCs and DMy

Various test functions will be used throughout the paper. Fix o > 0. It
is known [3] that ||1/(1 — w2)*||F, < 1 for all w € U. There is a constant C
independent of w € U such that

1 — |w|?

|| (1 — |u}|2)2
(1 —wz)or1

<

|r, <C

for all w € U [1,2]. Here we follow the convention that C' will denote a positive
constant, which may vary from one appearance to the next.

Theorem 2.1. Fiz oo > 0 and let ® be an analytic self-map of U. Define
DCs(f) = (fo®) for f € HU). Then

DCgs : F,, — Z is bounded
S0 cZ 0P cZ 0 cZ and ||P] <1
< DCs : Fyy — Z is compact.

Proof. First assume that there is a constant C' independent of f € F, such
that [[(DCo)(H)llz < C||f|lF, for all f € F,. Since polynomials belong to F,
it is immediate that ®', ®®’ and ®2&’ € Z. In particular

(1= 12P)|(@*()®'(2))"]

= (1= [2])|®°(2)®" (2) + 60(2)P’ (2)®" (2) + 2(P'(2))?|

< [|o%®’||
for all z € U and a triangle inequality argument yields
(2) (1= 121)[2(2"(2))°] < C + 9|z +6(1 — [*)|®'(2)2" ()]
for all z € U. Since

(1= [2*)[3¢'(2)@" () + @(2)@"(2)| < [|@2']|2
for all z € U, a second application of the triangle inequality yields
3) (1= 12*)[3¢"(2)@" ()| < [|[@®']|z + | @] 2
for all z € U. Substitution into (2) yields
(4) sup(1 — |2[*)|®"(2)* < oc.
zeU
Let 8 > 0. An analytic function g belongs to the Bloch space B? if

sup,cp (1 — |22)P|¢’(2)| < co. The relation (4) implies that ® € BY/3. Fur-
thermore (4) implies that

(1= |29 (2)]

sup < o0
lo(z)<1/2 (1 —|®(2)2)1/3

(5)
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For w € U, define the function f,, by

2 212
6 o B UZIRWP) A= [Bw)P)?
(1=2(w)z)* (I -(w)z)*+t (1 - D(w)z)**+?
where z € U and 8 = (a+ 1)(a+2), v = —2a(a+2) and A = a(a + 1). By
the preliminary remarks there is a constant C' depending only on « such that
[ fwllr, < C for all w e U. Therefore ||(DCs)(fw)|lz < C for all w. For ease
of notation let g, = (f/, o ®)®’. Then

(7) sup(1 — [2[*)[gi(2)| < C
zeU

for all w. By a calculation g!) = (f},0®)®" +3(f/o®)®'®"+(fl o®)(®)>. The
relation (7) and the calculations f] (®(w)) = f//(®(w)) = 0 and f(®(w)) =

2a(a + 1)(a+ 2)B(w) /(1 — |®(w)]|2)*+? yield

(1 [wf2)|® (w) | (w)[?
- [@w)pes = C

for all w € U. It follows that

(8)

(1~ Jw*)"/?|@" (w)|
Sup 2)(a+3)/3
1/2<|®(w)] (1 —[®(w)[?)
The relations (5) and (8) imply
1— 2\1/3 o’
o) up (L B2
v (L=[@(2)2)Y
Thus Cy : BY/3 — B'/3 is bounded [6]. Furthermore (8) implies
112Y1/3|3
AR
e(z)=1 (1= ]@(2)[2)1/3

and as in [6] it follows that Cg : BY/? — B'/3 is compact. A result of J. H.
Shapiro [5] now yields ||®||s < 1 and the proof of the first implication of the
theorem is complete.

Next assume & € Z, &P’ € Z, ®?®’ € Z and ||®||, < 1. In order to prove
that DCs : F, — Z is compact, let (f,) be a bounded sequence in F, with
frn — 0 uniformly on compact subsets of U as n — oo. It is enough to prove
that ||[(DCs)(fn)|lz — 0 as n — co. For ease of notation, let g, = DCs(fy,).
It is clear that |g,(0)] — 0 and |g,(0)] — 0 as n — co. An argument will be
given to prove that sup,cy (1 — |2[?)|g(2)] = 0 as n — oc.

First, since f/, — 0 uniformly on compact subsets as n — oo,

(10) sup(1 — [2[*)] f(®(2))2"(2)| < [|@']|z max |f;(w)] = 0asn— oo,
€U wl<[[]lo

< 0

< 0

Since f// — 0 uniformly on compact subsets, the relation (3) yields

(11) sup(1 — [z)|f7(®(2))®'(2)®"(2)] < C max |f’(w)| — 0 as n — oo.
z2eU [w|< [Pl oo
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Finally, by relation (4),
(12) sup(L—|2P*)|f (@)@ (2)P <€ max | (w)] — 0 as n — oo.
zeU

n
lw|<[[®]lo

The relations (10), (11) and (12) now yield |[(DCs)(fr)|lz — 0 as n — oo,
and thus DCg : F, — Z is compact.
The final implication in the proof is immediate. (I

The test functions for Theorem 2.3 require the following lemma.

Lemma 2.2. Fiz o > 0 and let w € U. There is a constant C' depending only

on a such that
(1= Jw[?*)?
(1 —wz)ot3

|F, <C

forallw e U.

Proof. Let w € U and define g, (2) = (1 — |w|?)/(1 — wz)@*3)/3, By previous
remarks, g, € F/3 and there is a constant C' with [|gu|/r,,, < C for all w.

A known result [4] states that if f € F, and g € Fj, then fg € F,4p and
1f9llFurs < IfllFNgllp,- Thus g, € Fo and g3 |lF, < C- 0

Theorem 2.3. Fiz o > 0 and let ¥ € H(U). Define (DMg)(f) = (Vf)" for
f e H(U). Then
DMy : F, — Z is bounded
S V=0 DMy : Fy — Z is compact.
Proof. First assume ||(DMg)(f)|lz < C| f||F, for a constant C' independent of

f- Tt will be shown that ¥ = 0 and this is enough to complete the proof.
For w € U, define the test function f,, by
—1 3(1—wP) 301 —|wP)? (1 |w?)?
_ — U).
fulz) (1 —wz)> * (1 —wz)otl (1 —wz)ot? + (1 —wz)ot3 (2€0)

Since || fu|lF, < C for all w € U it follows that |[(DMy)(fuw)llz = (¥ fw) ||z <
C for all w. Calculations yield

sup(l — [22)]fu ()W (2) + 3f1,(2) ¥ (2) + 3f1,(2)¥'(2) + fi (2)¥(2)| < C

for all w. Since f,(w) =0= f/ (w) = f/(w) and f (w) = 6w>/(1 — |w|?)**3
it follows that
|w]? [P (w)]

- <

(1= [w[2)et2 =
for all w € U. For w with 1/2 < |w]|, [¥(w)| < C(1 — |w|?)*T2. An argument
using the Maximum Modulus Theorem now proves that ® = 0. The proof is
complete. (I
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3. The operators Ce D and Mg D

A known result states that f € F, < f' € Fyy1 [3]. In particular, if
'€ Foqq, then [|f||g, < |f(0)] + C||f'||F.,, for a constant C' depending only
on «. Based on this fact, information about the operator CeD : F,, — Z can
be obtained from the following theorem.

Theorem 3.1. Fix o > 0 and let ® be an analytic self-map of U. Then
Co : F,, — Z is bounded
S dcZ dcZand P <1
& Cp - Fy — Z is compact.

Proof. First assume there exists C' > 0 such that ||Cof|z < C|/f||r,. For
w € U define
-1 1 1 1—[®w)?
folz) = ———— ¢ al LG
@ (1-d(w)z)>  a+l(l—d(w)z)+!
Since || fuwl|lF, < C for all w it follows that || f, o ||z < C and therefore

sup (1 - |2[2)].£1,(@(2)) " (2) + ('(2))* fu(®(2))| < C

for all w € U. Since f/,(®(w)) =0 and f/(®(w)) = WQ/G — [ ®(w)]?)+? it
follows that

2V 2 2
(1~ [w)|®(w)F|e(w)* _
(1= [@(w)P)+=> —
In particular,

(1 [w]?)|® (w)?
(13) o o A= [@(w)p)erz <%

The hypothesis implies that ® € Z and ®2?/2 € Z. Therefore

(14) sup(1 — [2]*)|@"(2)] < |||z
zeU
and
Sug(l = [2[7)[@(2)2" (2) + (2'(2))?] < [|2%/2] 2
zE
A triangle inequality argument yields
(15) (1= [z)@"(2)]* < @]z + [|9?/2]|z for all z € U

and thus

(1= |w[?)[®' (w)[?
16 sup < 00
16) s (1= [B(w)P)r2

The equations (13) and (16) yield
(1 —[2)[2" (=)

sup < 00
zeu (1= |®(2)[2)>+2
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By an argument as in Theorem 2.1 and Xiao’s result [6], Cp : BY/2 — B'/2
is compact. The details are omitted. Shapiro’s result [5] yields || ®] - < 1.

To complete the theorem, assume that ® € Z, ®? € Z and || ®|| < 1.
Suppose that (f,,) is a bounded sequence in F,, such that f,, — 0 uniformly on
compact subsets. Relations (14) and (15) apply and yield

(1= [z (fa 0 )" () = (1 = [2]) | £ (2(2)) 2" (2) + (2'(2))* ;/ ((2))]
<C( max |fy(w)+ max |f7(w)]).
(Iw\é\lél\m 0]l [w|<[[®loo [ (w)l)
Since f, — 0 uniformly on compact subsets, it now follows as in Theorem 2.1
that || fn, o ®||z — 0 as n — co. Thus Cy : F,, — Z is compact.
The remaining implication is immediate and the proof is complete. Il
Theorem 3.2. Fix o > 0 and let ® be an analytic self-map of U. Then
CoD : F, — Z is bounded
s dcZ e and P <1
& CoD : Fy — Z is compact.

Proof. Assume that Ce D : F,, — Z is bounded and let g € F, 1. Define f by

1) = [ gtw) du.

It follows that f € F, and || f|| 7, < C|g||F,,, for a constant C' depending only
on « [3]. Therefore ||(CeD)(f)|z < C| fllF, and

lgo@llz =If"o®llz < Cllfllr. < Clgllr

and thus Cg : F,,y1 — Z is bounded. By Theorem 3.1, ® € Z,®2? € Z and
18]l < 1.

Now assume that ® € Z, ®? € Z and ||®||» < 1. Let (f,) be a bounded
sequence in F, with f, — 0 uniformly on compact subsets as n — oo. Then
| fllFory < C [3] and f;, — 0 uniformly on compact subsets. By Theorem
3.1, Cp : Fyi1 — Z is compact and thus ||f, o ®||z — 0. This shows that
CsD : F, — Z is compact. The remaining implication is immediate. U

Theorem 3.3. Fiz o> 0 and let U € H(U). Then
My : Fo, — Z is bounded < ®=0< My : F, — Z is compact.

Proof. First assume that there is a constant C' independent of f € F, such
that ||Mw(f)|lz < C||f|lr,. For w € U, define g, by
1 1— |w]? (1 —[w[*)?
90() = T~ 2a et T U mmaere G EU)
There is a constant C' independent of w such that ||gw||r, < C and it follows
that

325(1 = 12*) 190 (2) ¥ (2) + 29, (2)¥' (2) + g (2)¥(2)] < C.
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Since gy, (w) = ¢/, (w) = 0 and ¢” (w) = 2w?/(1 — |w|?)**+2, it follows as in the
proof of Theorem 2.3 that

L
(1_||15}w2))|a+1 < C for w with |w| > 1/2.

As in the previous argument, ¥ = 0.
The remaining implications are immediate and the proof is complete. O

Theorem 3.4. Fiz o> 0 and ¥ € H(U). Then
MyD : Fy, — Z is bounded <V =0« MgD : F, — Z is compact.

Proof. Assume that MgD : F, — Z is bounded. By an argument as in the
proof of Theorem 3.2, it follows that My : F,y1 — Z is bounded. Therefore
¥ = 0 and the proof is complete. (]

4. The weighted composition operator ¥Cgs : F, — Z

Fix ¥ € H(U) and let ® be an analytic self-map of U. The weighted
composition operator ¥Cs is defined by UCq(f) = U(f o @) for f € H(U).

Fix z € U and a > 0. For f € F,, there is a constant depending only on «
and n = 0,1,2,... such that | f("™)(2)| < C||f|lr, /(1 — |z]?)*+".

Theorem 4.1. Fiz o > 0. Let ® be an analytic self-map of U and let ¥ €
H(U). Then
VCs : F, — Z is bounded <

A EPE)
an A jeepe <

(1= [2) 120/ (:)¥/(2) + W(2)8"(2)
(18) s 1= [B() Py <00 and

(1= B )P
19 AP -

Proof. First assume conditions (17), (18) and (19) and let f € F,. For conve-
nience denote the operator ¥Cg by W. By a calculation

(20)  (Wf)" = (fo@)W" + (f o®) 20V + V") + (f" 0 )W(P)*.
The preliminary remarks and (17)-(19) imply
1) [(WHO)] + (W) (0)] + sup(l — =PI H" () < ClIf .

and thus |[W |z < C|fllF,-
To prove necessity of the conditions, assume that |[W f||z < C||f||F, for a
constant C' independent of f € F,. The test functions f,, defined at (6) will
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be used with various choices for 3, v and A. Recall || f,||F, < C for a constant
C independent of w. Thus there is a constant C' such that

(22) sup(1 — |[2[H)|(W f,)"(2)| < C for all w € U.
zeU

First let 8 = (a+1)(a+2), v = —2a(a+2) and A = a(a+1). Calculations
yield fu(®(w)) = 2/(1 — [B(w)?)*, f(®(w) = 0 and f1(B(w)) = 0. The
relations (20) and (22) yield

" (w)]
(1= [@(w)?)> ~

for w € U. Condition (17) is established.
In order to obtain (18), let 8 = —2(a+2), v = 4o+ 6 and A = —2(a + 1).

Then f,(®(w)) =0 = f(®(w)) and f,(®(w)) = 2®(w)/(1 — |®(w)|*)*+!. By
relation (22),

(1wl

| (w)]
(1= [®(w)[?)+!

(1= |w]*) 20" (w)¥' (w) + ¥ (w)®" (w)| < C

for w € U. Thus
(1 — |w[*)[20" (w) ¥’ (w) + ¥ (w)P" (w)|

N (T~ )Py R
A triangle inequality argument using ¥ € Z, U® € Z yields
(24) (1= [w]*) |20 (w)¥' (w) + ¥(w)®" (w)| < [V z +[|¥] 2
and thus
o5) A )R @)W () + @)@ w)]
|B(w)|<1/2 (1 =@ (w)[?)o*

The relations (23) and (25) yield (18).
The final argument uses § = 1, v = —2 and A = 1. Calculations yield
— 2
Ful®(w)) = 0= £1,(®(w)) and f4((w)) = 28(w)" /(1 — [®(w)[)*+2. Substi-
tution into (22) yields

sup (1= |22 ()2 (2)[?
o) >172 (1 —[P(z)[2)at2

To complete the argument note that ¥®2 ¢ Z, & € Z and U € Z. A
triangle inequality argument yields

(1= [w)[T(w)[|@ (w)]* < C (¥2%|z + [Tl + [|¥] 2)-
The relation (19) now follows. The proof is complete. O

A sketch is given for the proof of the last theorem.
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Theorem 4.2. Assume that VCo : F, — Z is bounded. Then VCo : F, — Z
is compact if and only if

(1 —[=[)¥"(2)|

(26) a1 ()P
and

(1 - [:2)20/ ()W (=) + D(2)3"(2)] _
(27) | (2)|—1 (1 —1]®(2)|?)tt =0
and
o ORI EE

1im
|B(z)[=1 (1 — |®(2)[2)ot2

Proof. First assume that W = VCs : F, — Z is bounded and the relations
(26)-(28) hold. Assume that || f,||r, <1forn=1,2,... and f, — 0 uniformly
on compact subsets of U as n — oo. It follows immediately that | (W f,,)(0)| — 0
and [(Wf,)'(0)] — 0 as n — oco. To establish that W : F,, — Z is compact, it
remains to show that

sup(1 — |2[*)|(W £a)"(2)] = 0
zeU

as n — o0o. By a triangle inequality argument, it is enough to prove that

(29) 21615(1 — |2 fn(@(2)) " ()] = 0,

(30) 21615(1 — 2P £ (®(2)) 20/ (2)¥'(2) + ¥(2)®"(2))] — 0,
and

(31) igg(l — 2P f7(2(2))¥(2) (®'(2))*| = 0

as n — oo.

An argument will be given to establish (30). The arguments for (29) and
(31) are similar, and will be omitted. By the initial remarks, there is a constant
C depending only on « such that

(1= [21)| fr(@(2))][20" (2) W' (2) + W(2)@"(2))|
C(1—12*)
T (L= [@(z)P)!
Given € > 0, condition (27) now provides r, 0 < r < 1 such that

(32) \éffﬁ;(l = 210 (@(2))[[20(2) ¥ (2) + ¥ (2)2" (2)] < e

20" (2)V'(2) + U(2)D" (2)].

for all n. Since f], — 0 uniformly on compact subsets and since relation (18)
holds, there exists IV > 0 such that

(33) sup (1= |2[%)|/,(2(2))[[20"(2) W' (2) + ¥ (2)2" (2)] < e

|[®(2)|<r
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for all n > N. The relations (32) and (33) yield (30).

For the opposite implication, assume WCs : F,, — Z is compact. To estab-
lish (27), it is enough to consider any sequence z, in U with |®(z,)] — 1 as
n — 00. Let

Falz) = Ci(l —|9(za)l*) | Co(l = |®(za))? | O5(1 = [2(en))”

! (1= ®(zp)2)ot (1= B(20)2)2t2 (1 — Bzg)2)t3
where Cy = —2(a+3), Cy = 4a+10 and C5 = —2(a+2). Then || f,||F, < C and
fn — 0 uniformly on compact subsets as n — oco. Therefore |W(f,)||z — 0 as
n — oo. Since |P(zy,)| — 1, calculations yield

(1= [2n[*) 120 (20) V' (2n) + ¥ (2)2"(2)]
(1= ®(zp) )21
as n — oo and thus (27) is established.

The relation (26) is derived in a similar way with C; = (a + 2)(a + 3),
Cy = —2(a+1)(a+3) and C5 = (a+ 1)(a+2). Relation (28) is derived using
C1 =1=C3 and Cy = —2. The sketch is complete. O

—0
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