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PRODUCTS OF COMPOSITION, DIFFERENTIATION AND

MULTIPLICATION FROM THE CAUCHY SPACES TO THE

ZYGMUND SPACE

Rita A. Hibschweiler

Abstract. In this paper, we study products of composition, multipli-
cation and differentiation acting on the fractional Cauchy spaces and

mapping into the Zygmund space. Characterizations are provided for

boundedness and compactness of these operators.

1. Introduction

For α > 0, the space Fα is defined as the collection of functions f analytic
in the unit disc U = {z ∈ C : |z| < 1} of the form

(1) f(z) =

∫
T

1

(1− xz)α
dµ(x),

where µ varies over complex-valued Borel measures on T = {x ∈ C : |x| = 1}.
The space is normed by

∥f∥Fα
= inf ∥µ∥ ,

where the infimum extends over all measures µ participating in the integral
representation of f . The families Fα have been studied extensively [3].

The Zygmund space Z is the set of functions analytic in U for which

∥f∥Z = |f(0)|+ |f ′(0)|+ sup
z∈U

(1− |z|2)|f ′′(z)| < ∞.

Let H(U) denote the space of functions analytic in U . Let Φ be an analytic
self-map of U . The composition operator CΦ is defined by CΦ(f) = f ◦ Φ
for f ∈ H(U). A function Ψ ∈ H(U) induces the multiplication operator
MΨ(f) = Ψf for f ∈ H(U). Finally the differentiation operator D is defined
by D(f) = f ′. The operators to be studied here are products of CΦ, MΨ and
D, acting on functions f ∈ Fα. Characterizations are provided on the inducing
symbols Φ and Ψ so that the associated operators are bounded or compact.
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2. The operators DCΦ and DMΨ

Various test functions will be used throughout the paper. Fix α > 0. It
is known [3] that ∥1/(1 − wz)α∥Fα

≤ 1 for all w ∈ U . There is a constant C
independent of w ∈ U such that

∥ 1− |w|2

(1− wz)α+1
∥Fα

≤ C and ∥ (1− |w|2)2

(1− wz)α+2
∥Fα

≤ C

for all w ∈ U [1,2]. Here we follow the convention that C will denote a positive
constant, which may vary from one appearance to the next.

Theorem 2.1. Fix α > 0 and let Φ be an analytic self-map of U . Define
DCΦ(f) = (f ◦ Φ)′ for f ∈ H(U). Then

DCΦ : Fα → Z is bounded

⇔ Φ′ ∈ Z, ΦΦ′ ∈ Z, Φ2Φ′ ∈ Z and ∥Φ∥∞ < 1

⇔ DCΦ : Fα → Z is compact.

Proof. First assume that there is a constant C independent of f ∈ Fα such
that ∥(DCΦ)(f)∥Z ≤ C∥f∥Fα

for all f ∈ Fα. Since polynomials belong to Fα

it is immediate that Φ′, ΦΦ′ and Φ2Φ′ ∈ Z. In particular

(1− |z|2)|(Φ2(z)Φ′(z))′′|
= (1− |z|2)|Φ2(z)Φ′′′(z) + 6Φ(z)Φ′(z)Φ′′(z) + 2(Φ′(z))3|
≤ ∥Φ2Φ′∥Z

for all z ∈ U and a triangle inequality argument yields

(2) (1− |z|2)|2(Φ′(z))3| ≤ C + ∥Φ′∥Z + 6(1− |z|2)|Φ′(z)Φ′′(z)|

for all z ∈ U . Since

(1− |z|2)|3Φ′(z)Φ′′(z) + Φ(z)Φ′′′(z)| ≤ ∥ΦΦ′∥Z

for all z ∈ U , a second application of the triangle inequality yields

(3) (1− |z|2)|3Φ′(z)Φ′′(z)| ≤ ∥ΦΦ′∥Z + ∥Φ′∥Z

for all z ∈ U . Substitution into (2) yields

(4) sup
z∈U

(1− |z|2)|Φ′(z)|3 < ∞.

Let β > 0. An analytic function g belongs to the Bloch space Bβ if
supz∈U (1 − |z|2)β |g′(z)| < ∞. The relation (4) implies that Φ ∈ B1/3. Fur-
thermore (4) implies that

(5) sup
|Φ(z)|≤1/2

(1− |z|2)1/3|Φ′(z)|
(1− |Φ(z)|2)1/3

< ∞.
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For w ∈ U , define the function fw by

(6) fw(z) =
β

(1− Φ(w)z)α
+

γ(1− |Φ(w)|2)
(1− Φ(w)z)α+1

+
λ(1− |Φ(w)|2)2

(1− Φ(w)z)α+2
,

where z ∈ U and β = (α + 1)(α + 2), γ = −2α(α + 2) and λ = α(α + 1). By
the preliminary remarks there is a constant C depending only on α such that
∥fw∥Fα ≤ C for all w ∈ U . Therefore ∥(DCΦ)(fw)∥Z ≤ C for all w. For ease
of notation let gw = (f ′

w ◦ Φ)Φ′. Then

(7) sup
z∈U

(1− |z|2)|g′′w(z)| ≤ C

for all w. By a calculation g′′w = (f ′
w◦Φ)Φ′′′+3(f ′′

w◦Φ)Φ′Φ′′+(f ′′′
w ◦Φ)(Φ′)3. The

relation (7) and the calculations f ′
w(Φ(w)) = f ′′

w(Φ(w)) = 0 and f ′′′
w (Φ(w)) =

2α(α+ 1)(α+ 2)Φ(w)
3
/(1− |Φ(w)|2)α+3 yield

(1− |w|2)|Φ′(w)|3|Φ(w)|3

(1− |Φ(w)|2)α+3
≤ C

for all w ∈ U . It follows that

(8) sup
1/2<|Φ(w)|

(1− |w|2)1/3|Φ′(w)|
(1− |Φ(w)|2)(α+3)/3

< ∞.

The relations (5) and (8) imply

(9) sup
z∈U

(1− |z|2)1/3|Φ′(z)|
(1− |Φ(z)|2)1/3

< ∞.

Thus CΦ : B1/3 → B1/3 is bounded [6]. Furthermore (8) implies

lim
|Φ(z)|→1

(1− |z|2)1/3|Φ′(z)|
(1− |Φ(z)|2)1/3

= 0

and as in [6] it follows that CΦ : B1/3 → B1/3 is compact. A result of J. H.
Shapiro [5] now yields ∥Φ∥∞ < 1 and the proof of the first implication of the
theorem is complete.

Next assume Φ′ ∈ Z, ΦΦ′ ∈ Z, Φ2Φ′ ∈ Z and ∥Φ∥∞ < 1. In order to prove
that DCΦ : Fα → Z is compact, let (fn) be a bounded sequence in Fα with
fn → 0 uniformly on compact subsets of U as n → ∞. It is enough to prove
that ∥(DCΦ)(fn)∥Z → 0 as n → ∞. For ease of notation, let gn = DCΦ(fn).
It is clear that |gn(0)| → 0 and |g′n(0)| → 0 as n → ∞. An argument will be
given to prove that supz∈U (1− |z|2)|g′′n(z)| → 0 as n → ∞.

First, since f ′
n → 0 uniformly on compact subsets as n → ∞,

(10) sup
z∈U

(1− |z|2)|f ′
n(Φ(z))Φ

′′′(z)| ≤ ∥Φ′∥Z max
|w|≤∥Φ∥∞

|f ′
n(w)| → 0 as n → ∞.

Since f ′′
n → 0 uniformly on compact subsets, the relation (3) yields

(11) sup
z∈U

(1− |z|2)|f ′′
n (Φ(z))Φ

′(z)Φ′′(z)| ≤ C max
|w|≤∥Φ∥∞

|f ′′
n (w)| → 0 as n → ∞.
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Finally, by relation (4),

(12) sup
z∈U

(1− |z|2)|f ′′′
n (Φ(z))||Φ′(z)|3 ≤ C max

|w|≤∥Φ∥∞
|f ′′′

n (w)| → 0 as n → ∞.

The relations (10), (11) and (12) now yield ∥(DCΦ)(fn)∥Z → 0 as n → ∞,
and thus DCΦ : Fα → Z is compact.

The final implication in the proof is immediate. □

The test functions for Theorem 2.3 require the following lemma.

Lemma 2.2. Fix α > 0 and let w ∈ U . There is a constant C depending only
on α such that

∥ (1− |w|2)3

(1− wz)α+3
∥Fα

≤ C

for all w ∈ U .

Proof. Let w ∈ U and define gw(z) = (1− |w|2)/(1− wz)(α+3)/3. By previous
remarks, gw ∈ Fα/3 and there is a constant C with ∥gw∥Fα/3

≤ C for all w.

A known result [4] states that if f ∈ Fα and g ∈ Fβ , then fg ∈ Fα+β and
∥fg∥Fα+β

≤ ∥f∥Fα
∥g∥Fβ

. Thus g3w ∈ Fα and ∥g3w∥Fα
≤ C. □

Theorem 2.3. Fix α > 0 and let Ψ ∈ H(U). Define (DMΨ)(f) = (Ψf)′ for
f ∈ H(U). Then

DMΨ : Fα → Z is bounded

⇔ Ψ ≡ 0 ⇔ DMΨ : Fα → Z is compact.

Proof. First assume ∥(DMΨ)(f)∥Z ≤ C∥f∥Fα for a constant C independent of
f . It will be shown that Ψ ≡ 0 and this is enough to complete the proof.

For w ∈ U , define the test function fw by

fw(z) =
−1

(1− wz)α
+

3(1− |w|2)
(1− wz)α+1

− 3(1− |w|2)2

(1− wz)α+2
+

(1− |w|2)3

(1− wz)α+3
(z ∈ U).

Since ∥fw∥Fα ≤ C for all w ∈ U it follows that ∥(DMΨ)(fw)∥Z = ∥(Ψfw)
′∥Z ≤

C for all w. Calculations yield

sup
z∈U

(1− |z|2)|fw(z)Ψ′′′(z) + 3f ′
w(z)Ψ

′′(z) + 3f ′′
w(z)Ψ

′(z) + f ′′′
w (z)Ψ(z)| ≤ C

for all w. Since fw(w) = 0 = f ′
w(w) = f ′′

w(w) and f ′′′
w (w) = 6w3/(1− |w|2)α+3

it follows that
|w|3|Ψ(w)|

(1− |w|2)α+2
≤ C

for all w ∈ U . For w with 1/2 < |w|, |Ψ(w)| ≤ C(1 − |w|2)α+2. An argument
using the Maximum Modulus Theorem now proves that Φ ≡ 0. The proof is
complete. □
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3. The operators CΦD and MΨD

A known result states that f ∈ Fα ⇔ f ′ ∈ Fα+1 [3]. In particular, if
f ′ ∈ Fα+1, then ∥f∥Fα

≤ |f(0)|+ C∥f ′∥Fα+1
for a constant C depending only

on α. Based on this fact, information about the operator CΦD : Fα → Z can
be obtained from the following theorem.

Theorem 3.1. Fix α > 0 and let Φ be an analytic self-map of U . Then

CΦ : Fα → Z is bounded

⇔ Φ ∈ Z, Φ2 ∈ Z and ∥Φ∥∞ < 1

⇔ CΦ : Fα → Z is compact.

Proof. First assume there exists C > 0 such that ∥CΦf∥Z ≤ C∥f∥Fα . For
w ∈ U define

fw(z) =
−1

α

1

(1− Φ(w)z)α
+

1

α+ 1

1− |Φ(w)|2

(1− Φ(w)z)α+1
(z ∈ U).

Since ∥fw∥Fα
≤ C for all w it follows that ∥fw ◦ Φ∥Z ≤ C and therefore

sup
z∈U

(1− |z|2)|f ′
w(Φ(z))Φ

′′(z) + (Φ′(z))2f ′′
w(Φ(z))| ≤ C

for all w ∈ U . Since f ′
w(Φ(w)) = 0 and f ′′

w(Φ(w)) = Φ(w)
2
/(1− |Φ(w)|2)α+2 it

follows that
(1− |w|2)|Φ′(w)|2|Φ(w)|2

(1− |Φ(w)|2)α+2
≤ C.

In particular,

(13) sup
1/2<|Φ(w)|

(1− |w|2)|Φ′(w)|2

(1− |Φ(w)|2)α+2
< ∞.

The hypothesis implies that Φ ∈ Z and Φ2/2 ∈ Z. Therefore

(14) sup
z∈U

(1− |z|2)|Φ′′(z)| ≤ ∥Φ∥Z

and
sup
z∈U

(1− |z|2)|Φ(z)Φ′′(z) + (Φ′(z))2| ≤ ∥Φ2/2∥Z .

A triangle inequality argument yields

(15) (1− |z|2)|Φ′(z)|2 ≤ ∥Φ∥Z + ∥Φ2/2∥Z for all z ∈ U

and thus

(16) sup
|Φ(w)|≤1/2

(1− |w|2)|Φ′(w)|2

(1− |Φ(w)|2)α+2
< ∞.

The equations (13) and (16) yield

sup
z∈U

(1− |z|2)|Φ′(z)|2

(1− |Φ(z)|2)α+2
< ∞.
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By an argument as in Theorem 2.1 and Xiao’s result [6], CΦ : B1/2 → B1/2

is compact. The details are omitted. Shapiro’s result [5] yields ∥Φ∥∞ < 1.
To complete the theorem, assume that Φ ∈ Z, Φ2 ∈ Z and ∥Φ∥∞ < 1.

Suppose that (fn) is a bounded sequence in Fα such that fn → 0 uniformly on
compact subsets. Relations (14) and (15) apply and yield

(1− |z|2)|(fn ◦ Φ)′′(z)| = (1− |z|2)|f ′
n(Φ(z))Φ

′′(z) + (Φ′(z))2f ′′
n (Φ(z))|

≤ C( max
|w|≤∥Φ∥∞

|f ′
n(w)|+ max

|w|≤∥Φ∥∞
|f ′′

n (w)|).

Since fn → 0 uniformly on compact subsets, it now follows as in Theorem 2.1
that ∥fn ◦ Φ∥Z → 0 as n → ∞. Thus CΦ : Fα → Z is compact.

The remaining implication is immediate and the proof is complete. □

Theorem 3.2. Fix α > 0 and let Φ be an analytic self-map of U . Then

CΦD : Fα → Z is bounded

⇔ Φ ∈ Z, Φ2 ∈ Z and ∥Φ∥∞ < 1

⇔ CΦD : Fα → Z is compact.

Proof. Assume that CΦD : Fα → Z is bounded and let g ∈ Fα+1. Define f by

f(z) =

∫ z

0

g(w) dw.

It follows that f ∈ Fα and ∥f∥Fα
≤ C∥g∥Fα+1

for a constant C depending only
on α [3]. Therefore ∥(CΦD)(f)∥Z ≤ C∥f∥Fα and

∥g ◦ Φ∥Z = ∥f ′ ◦ Φ∥Z ≤ C∥f∥Fα ≤ C∥g∥Fα+1

and thus CΦ : Fα+1 → Z is bounded. By Theorem 3.1, Φ ∈ Z,Φ2 ∈ Z and
∥Φ∥∞ < 1.

Now assume that Φ ∈ Z, Φ2 ∈ Z and ∥Φ∥∞ < 1. Let (fn) be a bounded
sequence in Fα with fn → 0 uniformly on compact subsets as n → ∞. Then
∥f ′

n∥Fα+1 ≤ C [3] and f ′
n → 0 uniformly on compact subsets. By Theorem

3.1, CΦ : Fα+1 → Z is compact and thus ∥f ′
n ◦ Φ∥Z → 0. This shows that

CΦD : Fα → Z is compact. The remaining implication is immediate. □

Theorem 3.3. Fix α > 0 and let Ψ ∈ H(U). Then

MΨ : Fα → Z is bounded ⇔ Φ ≡ 0 ⇔ MΨ : Fα → Z is compact.

Proof. First assume that there is a constant C independent of f ∈ Fα such
that ∥MΨ(f)∥Z ≤ C∥f∥Fα . For w ∈ U , define gw by

gw(z) =
1

(1− wz)α
− 2

1− |w|2

(1− wz)α+1
+

(1− |w|2)2

(1− wz)α+2
(z ∈ U).

There is a constant C independent of w such that ∥gw∥Fα
≤ C and it follows

that
sup
z∈U

(1− |z|2)|gw(z)Ψ′′(z) + 2g′w(z)Ψ
′(z) + g′′w(z)Ψ(z)| ≤ C.
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Since gw(w) = g′w(w) = 0 and g′′w(w) = 2w2/(1− |w|2)α+2, it follows as in the
proof of Theorem 2.3 that

|Ψ(w)|
(1− |w|2)α+1

≤ C for w with |w| > 1/2.

As in the previous argument, Ψ ≡ 0.
The remaining implications are immediate and the proof is complete. □

Theorem 3.4. Fix α > 0 and Ψ ∈ H(U). Then

MΨD : Fα → Z is bounded ⇔ Ψ ≡ 0 ⇔ MΨD : Fα → Z is compact.

Proof. Assume that MΨD : Fα → Z is bounded. By an argument as in the
proof of Theorem 3.2, it follows that MΨ : Fα+1 → Z is bounded. Therefore
Ψ ≡ 0 and the proof is complete. □

4. The weighted composition operator ΨCΦ : Fα → Z

Fix Ψ ∈ H(U) and let Φ be an analytic self-map of U . The weighted
composition operator ΨCΦ is defined by ΨCΦ(f) = Ψ(f ◦ Φ) for f ∈ H(U).

Fix z ∈ U and α > 0. For f ∈ Fα, there is a constant depending only on α
and n = 0, 1, 2, . . . such that |f (n)(z)| ≤ C∥f∥Fα

/(1− |z|2)α+n.

Theorem 4.1. Fix α > 0. Let Φ be an analytic self-map of U and let Ψ ∈
H(U). Then

ΨCΦ : Fα → Z is bounded ⇔

(17) sup
z∈U

(1− |z|2)|Ψ′′(z)|
(1− |Φ(z)|2)α

< ∞ and

(18) sup
z∈U

(1− |z|2)|2Φ′(z)Ψ′(z) + Ψ(z)Φ′′(z)|
(1− |Φ(z)|2)α+1

< ∞ and

(19) sup
z∈U

(1− |z|2)|Ψ(z)||Φ′(z)|2

(1− |Φ(z)|2)α+2
< ∞.

Proof. First assume conditions (17), (18) and (19) and let f ∈ Fα. For conve-
nience denote the operator ΨCΦ by W . By a calculation

(20) (Wf)′′ = (f ◦ Φ)Ψ′′ + (f ′ ◦ Φ) (2Φ′Ψ′ +ΨΦ′′) + (f ′′ ◦ Φ)Ψ(Φ′)2.

The preliminary remarks and (17)-(19) imply

(21) |(Wf)(0)|+ |(Wf)′(0)|+ sup
z∈U

(1− |z|2)|(Wf)′′(z)| ≤ C∥f∥Fα

and thus ∥Wf∥Z ≤ C∥f∥Fα .
To prove necessity of the conditions, assume that ∥Wf∥Z ≤ C∥f∥Fα

for a
constant C independent of f ∈ Fα. The test functions fw defined at (6) will
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be used with various choices for β, γ and λ. Recall ∥fw∥Fα
≤ C for a constant

C independent of w. Thus there is a constant C such that

(22) sup
z∈U

(1− |z|2)|(Wfw)
′′(z)| < C for all w ∈ U.

First let β = (α+1)(α+2), γ = −2α(α+2) and λ = α(α+1). Calculations
yield fw(Φ(w)) = 2/(1 − |Φ(w)|2)α, f ′

w(Φ(w)) = 0 and f ′′
w(Φ(w)) = 0. The

relations (20) and (22) yield

(1− |w|2) |Ψ′′(w)|
(1− |Φ(w)|2)α

≤ C

for w ∈ U . Condition (17) is established.
In order to obtain (18), let β = −2(α+ 2), γ = 4α + 6 and λ = −2(α+ 1).

Then fw(Φ(w)) = 0 = f ′′
w(Φ(w)) and f ′

w(Φ(w)) = 2Φ(w)/(1−|Φ(w)|2)α+1. By
relation (22),

(1− |w|2) |Φ(w)|
(1− |Φ(w)|2)α+1

|2Φ′(w)Ψ′(w) + Ψ(w)Φ′′(w)| ≤ C

for w ∈ U . Thus

(23) sup
|Φ(w)|>1/2

(1− |w|2)|2Φ′(w)Ψ′(w) + Ψ(w)Φ′′(w)|
(1− |Φ(w)|2)α+1

< ∞.

A triangle inequality argument using Ψ ∈ Z, ΨΦ ∈ Z yields

(24) (1− |w|2)|2Φ′(w)Ψ′(w) + Ψ(w)Φ′′(w)| ≤ ∥ΨΦ∥Z + ∥Ψ∥Z

and thus

(25) sup
|Φ(w)|≤1/2

(1− |w|2)|2Φ′(w)Ψ′(w) + Ψ(w)Φ′′(w)|
(1− |Φ(w)|2)α+1

< ∞.

The relations (23) and (25) yield (18).
The final argument uses β = 1, γ = −2 and λ = 1. Calculations yield

fw(Φ(w)) = 0 = f ′
w(Φ(w)) and f ′′

w(Φ(w)) = 2Φ(w)
2
/(1− |Φ(w)|2)α+2. Substi-

tution into (22) yields

sup
|Φ(w)|>1/2

(1− |z|2)|Ψ(z)||Φ′(z)|2

(1− |Φ(z)|2)α+2
< ∞.

To complete the argument note that ΨΦ2 ∈ Z, ΨΦ ∈ Z and Ψ ∈ Z. A
triangle inequality argument yields

(1− |w|2)|Ψ(w)||Φ′(w)|2 ≤ C (∥ΨΦ2∥Z + ∥ΨΦ∥Z + ∥Ψ∥Z).

The relation (19) now follows. The proof is complete. □

A sketch is given for the proof of the last theorem.
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Theorem 4.2. Assume that ΨCΦ : Fα → Z is bounded. Then ΨCΦ : Fα → Z
is compact if and only if

(26) lim
|Φ(z)|→1

(1− |z|2)|Ψ′′(z)|
(1− |Φ(z)|2)α

= 0

and

(27) lim
|Φ(z)|→1

(1− |z|2)|2Φ′(z)Ψ′(z) + Ψ(z)Φ′′(z)|
(1− |Φ(z)|2)α+1

= 0

and

(28) lim
|Φ(z)|→1

(1− |z|2)|Ψ(z)||Φ′(z)|2

(1− |Φ(z)|2)α+2
= 0.

Proof. First assume that W = ΨCΦ : Fα → Z is bounded and the relations
(26)-(28) hold. Assume that ∥fn∥Fα

≤ 1 for n = 1, 2, . . . and fn → 0 uniformly
on compact subsets of U as n → ∞. It follows immediately that |(Wfn)(0)| → 0
and |(Wfn)

′(0)| → 0 as n → ∞. To establish that W : Fα → Z is compact, it
remains to show that

sup
z∈U

(1− |z|2)|(Wfn)
′′(z)| → 0

as n → ∞. By a triangle inequality argument, it is enough to prove that

(29) sup
z∈U

(1− |z|2)|fn(Φ(z))Ψ′′(z)| → 0,

(30) sup
z∈U

(1− |z|2)|f ′
n(Φ(z)) (2Φ

′(z)Ψ′(z) + Ψ(z)Φ′′(z))| → 0,

and

(31) sup
z∈U

(1− |z|2)|f ′′
n (Φ(z))Ψ(z) (Φ′(z))2| → 0

as n → ∞.
An argument will be given to establish (30). The arguments for (29) and

(31) are similar, and will be omitted. By the initial remarks, there is a constant
C depending only on α such that

(1− |z|2)|f ′
n(Φ(z))||2Φ′(z)Ψ′(z) + Ψ(z)Φ′′(z)|

≤ C(1− |z|2)
(1− |Φ(z)|2)α+1

|2Φ′(z)Ψ′(z) + Ψ(z)Φ′′(z)|.

Given ϵ > 0, condition (27) now provides r, 0 < r < 1 such that

(32) sup
|Φ(z)|>r

(1− |z|2)|f ′
n(Φ(z))||2Φ′(z)Ψ′(z) + Ψ(z)Φ′′(z)| < ϵ

for all n. Since f ′
n → 0 uniformly on compact subsets and since relation (18)

holds, there exists N > 0 such that

(33) sup
|Φ(z)|≤r

(1− |z|2)|f ′
n(Φ(z))||2Φ′(z)Ψ′(z) + Ψ(z)Φ′′(z)| < ϵ
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for all n > N . The relations (32) and (33) yield (30).
For the opposite implication, assume ΨCΦ : Fα → Z is compact. To estab-

lish (27), it is enough to consider any sequence zn in U with |Φ(zn)| → 1 as
n → ∞. Let

fn(z) =
C1(1− |Φ(zn)|2)
(1− Φ(zn)z)α+1

+
C2(1− |Φ(zn)|2)2

(1− Φ(zn)z)α+2
+

C3(1− |Φ(zn)|2)3

(1− Φ(zn)z)α+3
,

where C1 = −2(α+3), C2 = 4α+10 and C3 = −2(α+2). Then ∥fn∥Fα
≤ C and

fn → 0 uniformly on compact subsets as n → ∞. Therefore ∥W (fn)∥Z → 0 as
n → ∞. Since |Φ(zn)| → 1, calculations yield

(1− |zn|2)|2Φ′(zn)Ψ
′(zn) + Ψ(z)Φ′′(z)|

(1− |Φ(zn)|2)α+1
→ 0

as n → ∞ and thus (27) is established.
The relation (26) is derived in a similar way with C1 = (α + 2)(α + 3),

C2 = −2(α+1)(α+3) and C3 = (α+1)(α+2). Relation (28) is derived using
C1 = 1 = C3 and C2 = −2. The sketch is complete. □
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