
Bull. Korean Math. Soc. 60 (2023), No. 4, pp. 1085–1100

https://doi.org/10.4134/BKMS.b220531

pISSN: 1015-8634 / eISSN: 2234-3016

HYPERSURFACES WITH PRESCRIBED MEAN CURVATURE

IN MEASURE METRIC SPACE

Zhengmao Chen

Abstract. For any given function f , we focus on the so-called pre-

scribed mean curvature problem for the measure e−f(|x|2)dx provided

that e−f(|x|2) ∈ L1(Rn+1). More precisely, we prove that there exists a
smooth hypersurface M whose metric is ds2 = dρ2 + ρ2dξ2 and whose

mean curvature function is
1

n

up

ρβ
ef(ρ

2)ψ(ξ)

for any given real constants p, β and functions f and ψ where u and ρ are
the support function and radial function ofM , respectively. Equivalently,

we get the existence of a smooth solution to the following quasilinear

equation on the unit sphere Sn,∑
i,j

(δij −
ρiρj

ρ2 + |∇ρ|2
)(−ρji +

2

ρ
ρjρi + ρδji) = ψ

ρ2p+2−n−βef(ρ
2)

(ρ2 + |∇ρ|2)
p
2

under some conditions. Our proof is based on the powerful method of

continuity. In particular, if we take f(t) = t
2
, this may be prescribed

mean curvature problem in Gauss measure space and it can be seen as
an embedded result in Gauss measure space which will be needed in

our forthcoming papers on the differential geometric analysis in Gauss

measure space, such as Gauss-Bonnet-Chern theorem and its application
on positive mass theorem and the Steiner-Weyl type formula, the Plateau

problem and so on.

1. Introduction

In the theory of classical differential geometry, the existence of hypersurfaces
with certain curvature function is a classical topic and such problem can be
described as follows: given a function f defined on the unit sphere Sn, does there
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exist a hypersurface M ⊆ Rn+1 such that curvature function of M satisfies the
following equation

(1) σk = f(ξ),

where σk is the normalized elementary symmetric function of order k of the
principal curvatures λ1, λ2, . . . , λn of M , that is,

(2) σk =
1

Ck
n

∑
i1<i2<ik

λi1λi2 · · ·λik

for any fixed k ∈ {1, 2, . . . , n}. In particular, if k = 1, σ1 is the mean curvature.
If k = n, σn is the Gaussian curvature and equation (1) is associated to the
classical Minkowski problem which was posed and solved by Minkowski [32,33]
provided 1

f is the density of the delta measure or a continuous function. The

works of Minkowski were extended by Aleksandrov and Jessen and Fenchel
independently provided 1

f dξ is a Borel measure defined on the unit sphere Sn,
see Schneider [42]. Based on the theory of Monge-Ampère equation, Lewy
[30], Nirenberg [35], Cheng and Yau [10], Pogorelov [39] and Caffarelli [6, 7]
analyzed the existence of convex solutions to equation (1) in Hölder or Sobolev
Space. For the intermediate case, it follows from classical Steiner formula

that σk = dWn−k

dσ where dWn−k and dσ are the infinitesimal of (n − k)-th
quermassintegrals measure and surface measure of M , respectively, for any
fixed 1 ≤ k ≤ n, see Santalo [40] or Burago and Zalgaller [5]. Therefore, σk
is called the k-th mean curvature and the equation (1) is associated to the
so-called Christoffel-Minkowski problem which was solved by Guan and Ma
[24].

By using the co-area formula, Federer [17] introduced curvature measures
under the hypothesis of positive reach. In convex frame, the curvature measure
of a convex body was deduced by Schneider [42]. Based on the potential theory,
Wang et al. [13, 14] introduced some notions of k-th mean curvature measure.
Some interesting σk curvatures were also introduced by Case et al. [8, 9]. In
polar coordinate system, the second fundamental form b = (bij)n×n and the
metric g = (gij)n×n of the hypersurface can be written in the term of the radial
function of the hypersurface. Since the principal curvatures {λi}ni=1 are the
eigenvalues of g−1b, we can see that k-th mean curvature can be written in the
term of the radial function of the hypersurface. In this direction, Guan, Li and
Li [23] provided the following interesting formula of k-th curvature measure:

(3) CM
n−k(E) =

∫
E

σk
√

det gdξ

for any Borel E ⊆ Sn and gave the existence of hypersurface which was pre-
scribed k-th mean curvature measure. Some associated and interesting results
can also be seen in Guan and Spruck [26], Guan and Guan [22] and Guan, Ren
and Wang [25].
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As an interesting and important measure in probability theory, several as-
pects of the theory of differential geometric analysis associated to the Gauss
measure have been developed, see Bogachev [2]. In particular, the Brunn-
Minkowski inequality for the Gauss measure has been discussed by several
authors, see Borell [3], Brascamp and Lieb [4], and Gardner and Zvavitch [18]
and so on. As an interesting aspect of convex geometry, Huang, Xi and Zhao
[28] posed and solved the Minkowski problem in Gauss measure space. Later,
the Lp Minkowski problem for Gauss measure has been established by Liu
[31]. Following classical construction of surface area measure introduced by
Minkowski, the notions of surface area measure in Gauss measure space intro-
duced by Huang, Xi and Zhao [28] is based on the following beautiful variational
formula:

(4) lim
t→0

γn(K + tL)− γn(K)

t
=

∫
Sn
hLdGK(ξ),

where K and L are two convex bodies containing the origin O at their interiors,
hL is the support function of L, γn(K) is the Gauss measure ofK (see Bogachev
[2]) and GK is called the surface area measure of the convex body K, that is,

(5) γn(K) =

∫
K

1

(2π)
n+1
2

e−
|x|2
2 dx,

and

(6) GK(E) =
1

(2π)
n+1
2

∫
ν−1
K (E)

e−
|x|2
2 dHn−1

for any Borel set E ⊆ Sn, where ν−1
k is the generalized inverse of Gauss mapping

of K. In particular, if K is smooth and strictly convex, we have

(7) GK(E) =
1

(2π)
n+1
2

∫
E

e−
ρ2K
2

σn
dξ

for any Borel set E ⊆ Sn, where ρK is the radial function of K. Moreover,
motivated by some works on Kähler geometry and by using the powerful opti-
mal transport theory, Cordero-Erausquina and Klartag [11] constructed a mo-

ment measure whose density is e−f(|x|2) provided f is convex and e−f(|x|2) ∈
L1(Rn+1), see also Santambrogio [41]. The main results of [3, 4, 11, 18, 28] can
be seen as interesting generalizations of classical results in integral geometry
and more results have been discussed by Gel’fand et al. [19] or Santalo [40].

It is worth mentioning that the works of Cordero-Erausquina and Klartag
[11] and Huang, Xi and Zhao [28] focus on the Gauss curvature of hypersurface
in Gauss measure space. Among the Gauss curvature, mean curvature is also
a class of important curvature in the differential geometry. In particular, a
hypersurface whose mean curvature vanishes is called the minimal hypersurface.
The minimal hypersurface problem is associated to the Plateau problem which
is a great motivation of modern variational methods and geometric measure
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theory, see Almgren [1], Courant [12], Pitts [38], Giusti [21], Osserman [36],
Struwe [44] or Dierkes, Hildebrandt and Sauvigny [15] and so on. More and
more variants of classical Plateau problem have been posed and solved, see
for example Morrey [34], Harvey and Lawson [27], Jost [29], Trudinger and
Wang [46], Petrache and Rivière [37] and so on. Moreover, by using Gauss-
Bonnet theorem and the theory of minimal hypersurface, Schoen and Yau [43]
established the positive mass theorem in general relativity. More comments on
the theory of minimal surfaces can be referred to Osserman [36].

In the present paper, motivated by the works of Huang, Xi and Zhao [28] and

Cordero-Erausquina and Klartag [11], for any f satisfying e−f(|x|2) ∈ L1(Rn+1),
we may consider the measure

(8) F (E) =

∫
E

e−f(|x|2)dx

for any Borel set E ⊆ Sn and focus on prescribing mean curvature problem for

the measure e−f(|x|2)dx which may be an attempt on some differential geometric
analysis in measure metric space, such as Gauss-Bonnet-Chern theorem and
its application on positive mass theorem, the Steiner-Weyl type formula, the
Plateau problem and so on. Motivated by (3) and (7), we may call the function

(9) e−f(|x|2)σ1
√
det g

the mean curvature function for the measure e−f(|ξ|2)dx. In the present paper,
we focus on the existence of hypersurface provided the mean curvature function

is up

nρβ ψ(ξ) for the measure e−f(|x|2)dx, that is

(10) e−f(ρ2)σ1
√
det g =

up

nρβ
ψ(ξ),

where u and ρ are the support function and radial function of the hypersurface
M , respectively, that is,

(11) u(y) = max{x · y : ∀x ∈M} ∀y ∈ Rn+1

and

(12) ρ(y) = max{λ ≥ 0 : λy ∈M} ∀y ∈ Rn+1.

In polar coordinate system, if the metric of hypersurface is ds2 = dρ2+ρ2dξ2,
we can see that

σ1 =
1

n

∑
i,j

gijbji(13)

=
1

n

1

ρ
√
ρ2 + |∇ρ|2

(δij −
ρiρj

ρ2 + |∇ρ|2
)(−ρij +

2

ρ
ρiρj + ρδij),

and

(14)
√
det g = ρn−1

√
ρ2 + |∇ρ|2, u =

ρ2√
ρ2 + |∇ρ|2

,
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(see Lemma 4.1 in Section 4. Appendix). Therefore, we focus on the existence
of smooth solutions to the following equation on the unit sphere Sn:

(15)
∑
i,j

(δij −
ρiρj

ρ2 + |∇ρ|2
)(−ρji +

2

ρ
ρjρi + ρδji) = ψ

ρ2p+2−n−βef(ρ
2)

(ρ2 + |∇ρ|2) p
2

.

Before stating the main result of the present paper, we assume the following
conditions hold.

(A.1) f ∈ C1(R) and 0 < ψ ∈ C1(Sn) satisfying

(16) |f |C1(R) + |ψ|C1(Sn) <∞,

(17) lim
t→∞

ef(t
2)tp+1−n−β <

n− 1

max
ξ∈Sn

ψ(ξ)
, lim

t→0
ef(t

2)tp+1−n−β >
n− 1

min
ξ∈Sn

ψ(ξ)
.

(A.2)

(18)

{
p− β < n if 2p− β ≥ n− 2,
p > −2 if 2p− β < n− 2.

The main result of the present paper can be stated as follows:

Theorem 1.1. For any fixed n ≥ 1, suppose the conditions (A.1) ∼ (A.2) hold.
Then there exists a solution ρ ∈ C2(Sn) to equation (15) satisfying

(19) ∥ρ∥C1(Sn) ≤ c,

where c depends only on p, β, f and ψ.

Remark 1.2. If f ≡ 0, p = β = 0, Theorem 1.1 has been proved by Treibergs
and Wei [45]. Similar topics can be referred to Yau [47].

Remark 1.3. This can be seen as an embedded result in Gauss measure space
and such result will be needed in our forthcoming papers on the differential
geometric analysis on some generalizations of some classical theorems in theo-
ries of curve and surfaces to Gauss measure space, such as Gauss-Bonnet-Chern
theorem and its application on positive mass theorem, (see do Carmo [16] and
Schoen and Yau [43]), the Steiner-Weyl type formula, (see Burago and Zalgaller
[5], Schneider [42]). In our project, we also focus on formulation of the Plateau
problem in the Gauss measure space via the variational method.

The proof of Theorem 1.1 is based on well-known continuous method and
one of cores is the a priori bounds of solutions to the following problem on the
unit sphere Sn:

(20)
∑
i,j

aijρij = ((ρ2 + |∇ρ|2)δij − ρiρj)ρij = b(ξ, ρ, |∇ρ|2).

The rest of paper is organized as follows: In Section 2, we get gradient
estimate of solutions. In Section 3, we prove Theorem 1.1.
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2. Gradient estimate

In this section, we consider the a priori bounds of solutions to the following
equation on the unit sphere Sn:∑

i,j

(δij −
ρiρj

ρ2 + |∇ρ|2
)(−ρji +

2

ρ
ρjρi + ρδji) = ψ

ρ2p+2−n−βef(ρ
2)

(ρ2 + |∇ρ|2) p
2

(21)

which is equivalent to the following equation,∑
i,j

((ρ2 + |∇ρ|2)δij − ρiρj)(−ρji +
2

ρ
ρjρi + ρδji) = ψ

ρ2p+2−n−βef(ρ
2)

(ρ2 + |∇ρ|2) p−2
2

.(22)

We let aij = (ρ2 + |∇ρ|2)δij − ρiρj . Then

(23)
∑
i,j

2aij
ρ
ρjρi =

2

ρ
((ρ2 + |∇ρ|2)Σiρ

2
i −

∑
i,j

ρ2i ρ
2
j ) = 2ρ|∇ρ|2

and

(24)
∑
i,j

aijρδji = ρaijδji = ρ(n(ρ2 + |∇ρ|2)− |∇ρ|2).

Putting (24) into (22), we have∑
i,j

aijρji = aij(
2

ρ
ρjρi + ρδji)− ψ(ξ)

ef(ρ
2)ρ2p+2−n−β

(ρ2 + |∇ρ|2) p−2
2

(25)

= ρ(nρ2 + (n− 1)|∇ρ|2)− ψ(ξ)
ef(ρ

2)ρ2p+2−n−β

(ρ2 + |∇ρ|2) p−2
2

.

In divergence form, equation (25) can be rewritten as follows:

div(
∇ρ√

ρ2 + |∇ρ|2
)(26)

= ρ(nρ2 + (n− 1)|∇ρ|2)− ψ(ξ)
ef(ρ

2)ρ2p+2−n−β

(ρ2 + |∇ρ|2) p−2
2

− ρ|∇ρ|2

(ρ2 + |∇ρ|2) 3
2

.

Therefore, we focus on the a priori bounds of solution to the following problem:

(27)
∑
i,j

aijρij = b(ξ, ρ, |∇ρ|2),

where b = b(x, s, w) satisfies the following condition;
(B.0) if 2p− β ≥ n− 2,

|b| ≤ A0w
max{p+4−n−β,2}

2 , |bx| ≤ A1w
p+4−n−β

2 ,

bs ≥ −A2w
max{p+3−n−β,2}

2 , bw ≥ −A3w
max{p+2−n−β,−3}

2

for large w; if 2p− β < n− 2,

|b| ≤ A0w
max{2−p,2}

2 , |bx| ≤ A1w
max{2−p,2}

2 , bs ≥ −A2w
− p

2 , bw ≥ −A3w
max{−p,−3}

2
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for large w.
This main result of this section can be stated as follows:

Theorem 2.1. For any fixed n ≥ 1, we let ρ ∈ C1(Sn) be a solution to (27).
Suppose that f and ψ are continuous on Sn satisfying

(28) |f |C1(R) + |ψ|C1(Sn) <∞,

p and β satisfies

(29)

{
p− β < n if 2p− β ≥ n− 2,
p > −2 if 2p− β < n− 2,

and

(30) 0 < m = min
ξ∈Sn

ρ(ξ) ≤M = max
ξ∈Sn

ρ(ξ) <∞.

Then there exists a positive constant c, depends only on f , ψ, A0, A1, A2, A3,
m and M , such that

(31) sup
ξ∈Sn

|∇ρ(ξ)| ≤ c <∞.

Proof. The proof is based on Maximum Principle. We let G = e2ρv = e2ρ|∇ρ|2.
Suppose that supG is achieved at the point ξ = ξ0 ∈ Sn. Then, at ξ = ξ0,

(32) 0 = Gi = 2e2ρ(vρi +Σlρlρli)

for any fixed i ∈ {1, 2, . . . , n} and and (Gij)n×n is non-positive. Direct calcu-
lation deduces that

Gij = 2e2ρ(vρij + 2Σαραραjρi +Σlρljρli +Σlρlρlij) + 4e2ρρj(vui +Σtρtρti).

Therefore, since (aij)n×n is positive, we have

0 ≥
∑
i,j

aij(vρij + 2Σαραραjρi +Σlρljρli +Σlρlρlij)(33)

+ 2
∑
i,j

aijρj(vρi +Σtρtρti) = Σ5
i=1Ii

at the point ξ = ξ0 where

I1 = v
∑
i,j

aijρij , I2 = 2Σijαaijραραjρi, I3 = Σijlaijρljρli,(34)

and

I4 = ΣijlaijΣlρlρlij , I5 = 2
∑
i,j

aijρj(vρi +Σtρtρti).(35)

Without loss of generalization, we may assume that v(ξ0) = |∇ρ(ξ0)|2 ≫ 1.
Otherwise, inequality (31) is trivial.

By choosing suitable coordinate, we may assume that

(36) ρi = δi1
√
v
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at the point ξ = ξ0. This means that (aij)n×n is diagonal at the point ξ = ξ0.
Moreover, it follows from (32) and (36) that

(37) ρ1i = −vδi1, Σiaii = (n− 1)v + nρ2

and

(38) Σiρii =
b− v2

ρ2 + v

at the point ξ = ξ0.
We now get the bounds of Σ5

i=1Ii. At the first step, we first analyze the
term I1 = v

∑
i,j

aijρij . It is easy to see that

I1 = v
∑
i,j

aijρij(39)

= vΣiaiiρii

= vb ≥

{
−A0v

max{p+6−n−β,4}
2 if 2p− β ≥ n− 2,

−A0v
max{4−p,4}

2 if 2p− β < n− 2,

at the point ξ = ξ0.
We next estimate the term I2 = 2Σijαaijραραjρi.

I2 = 2Σijαaijραραjρi = 2a11ρ
2
1ρ11 = −2ρ2v2(40)

at the point ξ = ξ0.
We next estimate the term I3 = Σijlaijρljρli.
Since aij = (ρ2 + v)δij − ρiρj , we have

(41) aii ≥ ρ2

for any fixed i ∈ {1, 2, . . . , n} and therefore

I3 = Σliaiiρ
2
li ≥ ρ2Σliρ

2
li ≥ 0(42)

at the point ξ = ξ0.
We next estimate the term I4 = Σijlρlaijρlij .
Since

∑
i,j

aijρij = b and aij = (ρ2 + v)δij − ρiρj , we have

(43)
∑
i,j

aijρijt +
∑
i,j

(2(ρρt +Σkρkρkt)δij − (ρitρj + ρiρjt))ρij = bt

for any fixed t ∈ {1, 2, . . . , n}. Multiplying ρt on both sides of (43) and taking
sum for the index t, we get

Σijtaijρtρijt +Σijt2(ρρ
2
t +Σkρtρkρkt)δijρij(44)

− Σijt(ρitρj + ρiρjt)ρijρt = Σtbtρt.

At the point ξ = ξ0, we have,

(45) Σiaiiρ1ρii1 = b1ρ1 − 2ρ21(ρ+ ρ11)Σiρii +Σiρ
2
1(ρ

2
i1 + ρ1iρi1).
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By Ricci identity,

(46) Σtiρt(ρtii − ρiit) = nΣtρ
2
t = nv

at the point ξ = ξ0. Combining (44), (45) and (46), we have

Σiaiiρ1ρ1ii = nvΣiaii − 2ρ21(ρ+ ρ11)Σiρii + b1ρ1 +Σiρ
2
1(ρ

2
i1 + ρ1iρi1)(47)

= I41 + I42 + I43,

where

(48) I41 = nvΣiaii − 2ρ21(ρ+ ρ11)Σiρii, I42 = b1ρ1, I43 = Σiρ
2
1(ρ

2
i1 + ρ1iρi1).

We first estimate the term I41 = nvΣiaii − 2ρ21(ρ+ ρ11)Σiρii.
It is easy to see that

I41 = nvΣiaii − 2ρ21(ρ+ ρ11)Σiρii(49)

= nv(nv + nρ2)− 2v(ρ− v)(b− v2)

ρ2 + v

≥ (n2 − 3)v2 − c

for sufficiently large v(ξ0).
We next estimate the term I42 = b1ρ1. Since

(50) b1ρ1 =
∂b

∂x1
ρ1 +

∂b

∂ρ
ρ21 + 2Σj

∂b

∂v
ρjρj1ρ1,

it follows that

(51) | ∂b
∂x1

ρ1| ≤ |∇b|
√
v

which means that

(52)
∂b

∂x1
ρ1 ≥

{
−A1v

p+5−n−β
2 if 2p− β ≥ n− 2,

−A1v
max{3−p,3}

2 if 2p− β < n− 2.

It is easy to see that

(53)
∂b

∂ρ
v ≥

{
−A2v

max{p+5−n−β,4}
2 if 2p− β ≥ n− 2,

−A2v
2−p,

2 if 2p− β < n− 2.

Since uj = δj1, we have

Σj
∂b

∂v
ρjρj1u1 =

∂b

∂v
ρ11ρ

2
1(54)

= −v2 ∂b
∂v

≥

{
−A3v

max{p+6−n−β,1}
2 if 2p− β ≥ n− 2,

−A3v
max{4−p,1}

2 if 2p− β < n− 2

for sufficiently large v(ξ0). Putting (52), (53) and (54) into (50), we have

(55) I42 = b1ρ1 ≥

{
−(A1 +A2 +A3)v

max{p+6−n−β,4}
2 if 2p− β ≥ n− 2,

−(A1 +A2 +A3)v
max{4−p,3}

2 if 2p− β < n− 2
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for sufficiently large v(ξ0).
We next deal with the term I43 = Σiρ

2
1(ρ

2
i1 + ρ1iρi1).

From (37), we see

(56) I43 = ρ21(Σiρ
2
i1 + ρ211) ≥ 2ρ21ρ

2
11 = 2v3

at the point ξ = ξ0.
Therefore, putting (49), (55) and (56) into (47), we get

(57) I4 ≥ 3

2
v3 − (A1 +A2 +A3)v

τ0 − c

for sufficiently large v(ξ0) where

(58) τ0 =

{
max{p+6−n−β,4}

2 if 2p− β ≥ n− 2,
max{4−p,4}

2 if 2p− β < n− 2.

It follows from (32) that

(59) I5 = 2
∑
i,j

aijρj(vρi +Σtρtρti) = 0

at the point ξ = ξ0.
Therefore, it follows from (39), (40), (42), (57), (59) and (33) that

(60) 0 ≥ Σ5
i=1Ii ≥

3

2
v3 − (A0 +A1 +A2 +A3)v

τ0 − c

at the point ξ = ξ0.
Since

(61)

{
p− β < n if 2p− β ≥ n− 2,
p > −2 if 2p− β < n− 2,

we have

(62) τ0 < 3.

Therefore, there exists a constant c, depends only on n,f , ψ, A0, A1, A2, A3, m
and M , such that

(63) v3 ≤ c

for sufficiently large v(ξ0). Multiplying e6ρ on both sides of (63) and we have,

(64) G3(x0) ≤ ce3ρ ≤ c

due to the assumption M = max
ξ
ρ(ξ) <∞. (64) implies that

(65) e2ρv ≤ c

at the point ξ = ξ0. Since m = min
ξ∈Sn

ρ(ξ) > 0, we can get the conclusion of

Theorem 2.1. □
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3. The proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Motivated by Treibergs and Wei [45], we consider the following auxiliary

problem with a parameter t ∈ [0, 1] on the unit sphere Sn,

(66) Lt[ρt](u) = div(
∇ut√

ρ2t + |∇ρt|2
)− ut = t(g(ξ)− ρt),

where g(ξ) = ρt((n− 1)ρ2t + n|∇ρt|2)− ψ(ξ)
ef(ρ2t )ρ2p+2−n−β

t

(ρ2
t+|∇ρt|2)

p−2
2

− ρt|∇ρt|2

(ρ2
t+|∇ρt|2)

3
2
.

Lemma 3.1. For any fixed n ≥ 1, and t ∈ [0, 1], we let ρt ∈ C2(Sn) be a
solution to

Lt[ρt]ρt = 0

for any t ∈ [0, 1]. Suppose the condition (A.1) holds. Then there exists a
constant c, independent on t, such that

0 < c−1 ≤ |ρt|C0(Sn) ≤ c

for any t ∈ [0, 1].

Proof. We consider the following extremal problem,

(67) Rt = max
ξ∈Sn

ρt(ξ)

for any fixed t ∈ [0, 1]. It follows from the compactness of Sn and the continuity
of ρt that there exists ξ1 ∈ Sn such that

(68) Rt = ρt(ξ1)

for any fixed t ∈ [0, 1]. Suppose that there exists a sequence {tj}∞j=1 ⊆ [0, 1]
such that

(69) Rtj → +∞

as j → ∞. It follows from (66) and the condition (A.1) that at the point ξ = ξ1,

L[ρtj ]ρtj = tj(g(ξ1)− ρtj )(70)

= tR3
tjψ(ξ1)(

n− 1

ψ(ξ1)
− e

f(R2
tj

)
Rp+1−n−β

tj )− tRtj

> −tjRtj = L[Rtj ]Rtj

as j → ∞. However, there exists a contradiction from (70). This implies there
exists a positive constant c > 0, independent of t, such that

(71) Rt ≤ c <∞

for any fixed t ∈ [0, 1]. We next consider the following extremal problem,

(72) rt = min
ξ∈Sn−1

ρt(ξ)
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for any fixed t ∈ [0, 1]. By a similar argument mentioned above, there exists a
positive constant c > 0, independent of t such that

(73) rt ≥
1

c
> 0

for any fixed t ∈ [0, 1]. (71) and (73) yield the desired conclusion of Lemma
3.1. □

As a corollary of Lemma 3.1 and some arguments of Theorem 2.1, we have:

Corollary 3.2. For any fixed n ≥ 1 and t ∈ [0, 1], we let ρt ∈ C2(Sn) be a
solution to

Lt[ρt]ρt = 0

for any t ∈ [0, 1]. Suppose the conditions (A.1) and (A.2) hold. Then there
exists a constant c, independent on t, such that

0 < c−1 ≤ |ρt|C1(Sn) ≤ c

for any t ∈ [0, 1].

Now, we are in a position to prove Theorem 1.1.

Proof. The final proof of Theorem 1.1 follows from a fixed point argument.
Following some arguments of Treibergs and Wei [45], we let C(Sn), C1(Sn) and
C1,α(Sn) be some Banach spaces on Sn with the standard norm. Define

(74) Br = {ρ ∈ C1,α(Sn) : |ρ|C1,α(Sn) ≤ r}.
We let

(75) Lt[ρt]u = div(
∇u√

ρ2t + |∇ρt|2
)− u.

Suppose that Lt[ρt] has an inverse in C1,α(Sn) and Ht be the inverse of Lt[ρt]
in C1,α(Sn). Then
(76) Lt[ρt]u = t(g(ξ)− ρt) ⇔ u = tHt(g(ξ)− ρt) = Kt(ρt).

Suppose that ρ is a solution to problem (15), we have

(77) ρ = K1(ρ)

which means that a fixed point of K1 is a solution to (15). Therefore, it suffices
to prove the existence of a fixed point of K1 in C1,α(Sn). To achieve this goal,
we prove that there exists a fixed point of Kt in C

1,α(Sn) for any fixed t ∈ [0, 1]
provided Lt[ρt] has an inverse in C1,α(Sn). Now we divide the proof of Theorem
1.1 into two steps.

Step 1. We prove that Lt[ρt] has an inverse in C1,α(Sn).
To get this goal, we claim the following argument,

Claim. For any fixed t ∈ [0, 1], we let Lt[ρt] be the operator defined in (75).
Then

(i) Lt[ρt] is self-adjoint;
(ii) The kernel of Lt[ρt] is trivial.
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Indeed, part (i) follows from that definition of Lt[ρt]. Therefore, it suffices
to show part (ii). Suppose that Lt[ρt]u = 0 for any u ∈ C1,α(Sn). It follows
from the divergence theorem that

(78) 0 = −
∫
Sn
Lt[ρt]uu =

∫
Sn
(

|∇u|2√
ρ2t + |∇ρt|2

+ u2)dξ ≥
∫
Sn
u2dξ

which means that u ≡ 0 for any fixed t ∈ [0, 1]. By the arbitrariness of u, we
see that

(79) {u ∈ C2(Sn) : Lt[ρt]u = 0} = {0}

which is the argument of part (ii).
Therefore, it follows from the standard solvability of linear elliptic equation

of second order that Lt[ρt] has an inverse, see Gilbarg and Trudinger [20].
Step 2. We prove that Kt has a fixed point in C1,α(Sn).
It follows from Lemma 3.1 and Corollary 3.2 that there exists R0 such that

(80) ∥u∥C1(Sn) ≤ R0

for any u ∈ C1,α(Sn) satisfying Kt(u) = u for any fixed t ∈ [0, 1].
It follows from the standard elliptic regularity theory of linear elliptic equa-

tion of second order thatKt : C
1,α(Sn) → C1,α(Sn) is compact, see Gilbarg and

Trudinger [20]. Therefore, it follows from Leray-Schauder fixed point theorem
that there exists ut ∈ BR0

such that

(81) Kt(ut) = ut

for any t ∈ [0, 1]. Taking t = 1, we get the desired conclusion of Theorem
1.1. □

4. Appendix

In this section, we list some basic geometric quantities which are used in the
present paper and can be referred to Guan, Li and Li [23].

Lemma 4.1. Suppose M is a hypersurface in Rn+1 with the metric ds2 =
dρ2 + ρ2dξ2 and with zero sectional curvature. Then the following statements
hold.

(a) The components of the metric g and its inverse g−1 can be expressed as
follows:

(82) gij = ρ2δij + ρiρj , g
ij =

1

ρ2
(δij −

ρiρj
ρ2 + |∇ρ|2

)

respectively and therefore det g = ρ2n−2(ρ2 + |∇ρ|2).
(b) The coefficients of second fundamental form bij are given by:

(83) bij =
ρ√

ρ2 + |∇ρ|2
(−ρij +

2

ρ
ρiρj + ρδij).
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(c) The support function u of hypersurface M is given by:

(84) u =
ρ2√

ρ2 + |∇ρ|2
.
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