DOI QR코드

DOI QR Code

Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets

  • Mohammad Reza Halvaeyfar (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • Ehsanollah Zeighami (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • S. Mohammad Mirhosseini (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • Ali Hassani Joshaghani (Department of Chemical Engineering, Arak Branch, Islamic Azad University)
  • Received : 2023.04.26
  • Accepted : 2023.07.19
  • Published : 2023.08.25

Abstract

In many fiber concrete beams with Carbon Fiber Reinforced Polymer (CFRP), debonding occurs between the carbon sheets and the concrete due to the low strength of the bonding resin. A total of 42 fiber concrete beams with a cross-section of 10×10 cm with a span length of 50 cm are fabricated and retrofitted with CFRP and subjected to a 4-point bending test. Graphene Oxide (GO) at 1, 2, and 3 wt% of the resin is used to improve the mechanical properties of the bonding resins, and the effect of length, width, and the number of layers of CFRP and resin material are investigated. The crack pattern, failure mode, and stress-strain curve are analyzed and compared in each case. The results showed that adding GO to polyamine resin could improve the bonding between the resin and the fiber concrete beam. Furthermore, the optimum amount of nanomaterials is equal to 2% by the weight of the resin. Using 2% nanomaterials showed that by increasing the length, width, and number of layers, the bearing and stiffness of fiber concrete beams increased significantly.

Keywords

References

  1. Abd-Elwahed, M.S., Khashaba, U.A., Ahmed, K.I., Eltaher, M.A., Najjar, I., Melaibari, A. and Abdraboh, A.M. (2021), "Experimental and numerical FEM of woven GFRP composites during drilling", Struct. Eng. Mech., 80(5), 503. https://doi.org/10.12989/sem.2021.80.5.503.
  2. Abderahmane, S., Mokhtar, B.M., Smail, B., Wayne, S.F., Zhang, L., Belabbes, B.B. and Boualem, S. (2017), "Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch", Struct. Eng. Mech., 63(3), 361. https://doi.org/10.12989/sem.2017.63.3.361.
  3. Abdullah, S.R., Rosli, F.N., Ali, N., Abd Hamid, N.A. and Salleh, N. (2020), "Modified epoxy for fibre reinforced polymer strengthening of concrete structures", Int. J. Integr. Eng., 12(9), 103-113.
  4. Acar, V., Cakir, F., Uysal, H., Seydibeyoglu, M.O., Akbulut, H. and Mosalam, K.M. (2017), "Strengthening of concrete beams by monolayer prepreg composites with and without graphene reinforcement", Constr. Build. Mater., 151, 866-880. https://doi.org/10.1016/j.conbuildmat.2017.06.150.
  5. Afzali, M., Rostamiyan, Y. and Esmaeili, P. (2022), "Nano-graphene oxide damping behavior in polycarbonate coated on GFRP", Struct. Eng. Mech., 84(6), 823. https://doi.org/10.12989/sem.2022.84.6.823.
  6. Ahangarnazhad, B.H., Pourbaba, M. and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463. https://doi.org/10.12989/scs.2020.35.4.463.
  7. Al-rousan, R.Z. (2021), "Case studies in construction materials integration of CFRP strips as an internal shear reinforcement in reinforced concrete beams exposed to elevated temperature", Case Stud. Constr. Mater., 14, e00508. https://doi.org/10.1016/j.cscm.2021.e00508.
  8. Al-Saawani, M.A., El-Sayed, A.K. and Al-Negheimish, A.I. (2020), "Effect of shear-span/depth ratio on debonding failures of FRP-strengthened RC beams", J. Build. Eng., 32, 101771. https://doi.org/10.1016/j.jobe.2020.101771.
  9. Al-Sodani, K.A.A., Rahman, M.K., Al-Osta, M.A. and Al-Amoudi, O.S.B. (2022), "Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets", Earthq. Struct., 23(5), 403. https://doi.org/10.12989/eas.2022.23.5.403.
  10. Alam, M.A. and Al Riyami, K. (2018), "Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates", Constr. Build. Mater., 162, 683-696. https://doi.org/10.1016/j.conbuildmat.2017.12.011.
  11. Alhassan, M.A., Al, R.Z. and Al, E.A. (2019), "Bond-slip behavior between fiber reinforced concrete and CFRP composites", Ain Shams Eng. J., 10(2), 359-367. https://doi.org/10.1016/j.asej.2019.03.001.
  12. Aslam, M., Shafigh, P., Jumaat, M.Z. and Shah, S.N.R. (2015), "Strengthening of RC beams using prestressed fiber reinforced polymers-A review", Constr. Build. Mater., 82, 235-256. https://doi.org/10.1016/j.conbuildmat.2015.02.051.
  13. Chen, J.F., Yang, Z.J. and Holt, G.D. (2001), "Dynamic assessment of a FRP suspension footbridge through field testing and finite element modelling", Steel Compos. Struct., 1(2), 231. https://doi.org/10.12989/scs.2001.1.2.231.
  14. Chen, Z. and Xu, R. (2022), "Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement", Earthq. Struct., 22(1), 39. https://doi.org/10.12989/eas.2022.22.1.039.
  15. El-Kholy, A.M., Mourad, S.A., Shaheen, A.A. and Mohamed, Y.A. (2019), "Finite element simulation for steel tubular members strengthened with FRP under compression", Struct. Eng. Mech., 72(5), 569. https://doi.org/10.12989/sem.2019.72.5.569.
  16. Gholami, M., Gorji Azandariani, M., Najat Ahmed, A. and Abdolmaleki, H. (2023), "Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams", Adv. Nano Res., 14(2), 127-139. https://doi.org/10.12989/anr.2023.14.2.127.
  17. Gorji Azandariani, M., Ghanbari-Ghazijahani, T., Mohebkhah, A. and Classen, M. (2021), "Concrete- and timber-filled tubes under axial compression - Numerical and theoretical study", J. Build. Eng., 44, 103231. https://doi.org/10.1016/j.jobe.2021.103231.
  18. Gorlova, A.M., Kayl, N.L., Komova, O.V., Netskina, O.V., Ozerova, A.M., Odegova, G.V., Bulavchenko, O.A., Ishchenko, A.V. and Simagina, V.I. (2018), "Fast hydrogen generation from solid NH3BH3 under moderate heating and supplying a limited quantity of CoCl2 or NiCl2 solution", Renew. Energy, 121, 722-729. https://doi.org/10.1016/j.renene.2018.01.089.
  19. Guo, R., Ren, Y., Li, M., Hu, P., Du, M. and Zhang, R. (2021a), "Experimental study on flexural shear strengthening effect on low-strength RC beams by using FRP grid and ECC", Eng. Struct., 227, 111434. https://doi.org/10.1016/j.engstruct.2020.111434.
  20. Guo, X., Wang, Y., Huang, P. and Shu, S. (2021b), "Fatigue behavior of RC beams strengthened with FRP considering the influence of FRP-concrete interface", Int. J. Fatig., 143, 105977. https://doi.org/10.1016/j.ijfatigue.2020.105977.
  21. Haddad, R.H. and Obaidat, Y.T. (2018), "A nonlinear finite element model for shear deficient heat-damaged concrete beams repaired using NSM CFRP strips", Constr. Build. Mater., 170, 314-325. https://doi.org/10.1016/j.conbuildmat.2018.03.084.
  22. Iqbal, S., Ali, A., Holschemacher, K., Bier, T.A. and Shah, A.A. (2016), "Strengthening of RC beams using steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC) and their strength predictions", Mater. Des., 100, 37-46. https://doi.org/10.1016/j.matdes.2016.03.015.
  23. Irshidat, M.R. and Al-Saleh, M.H. (2016), "Effect of using carbon nanotube modified epoxy on bond-slip behavior between concrete and FRP sheets", Constr. Build. Mater., 105(2), 511-518. https://doi.org/10.1016/j.conbuildmat.2015.12.183.
  24. Irshidat, M.R. and Al-Saleh, M.H. (2017), "Flexural strength recovery of heat-damaged RC beams using carbon nanotubes modified CFRP", Constr. Build. Mater., 145, 474-482. https://doi.org/10.1016/j.conbuildmat.2017.04.047.
  25. Irshidat, M.R., Al-Saleh, M.H. and Al-Shoubaki, M. (2015), "Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns", Compos. Struct., 134, 523-532. https://doi.org/10.1016/j.compstruct.2015.08.108.
  26. Irshidat, M.R., Al-Saleh, M.H. and Almashagbeh, H. (2016), "Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites", Mater. Des., 89, 225-234. https://doi.org/10.1016/j.matdes.2015.09.166.
  27. Irshidat, M.R. and Al-Shannaq, A. (2018), "Using textile reinforced mortar modified with carbon nano tubes to improve flexural performance of RC beams", Compos. Struct., 200, 127-134. https://doi.org/10.1016/j.compstruct.2018.05.088.
  28. Kim, S.H. and Aboutaha, R.S. (2004), "Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation", Steel Compos. Struct., 4(5), 333. https://doi.org/10.12989/scs.2004.4.5.333.
  29. Li, Z., Gonzalez, A.J., Heeralal, V.B. and Wang, D.Y. (2018), "Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin", Chem. Eng. J., 138(13), 2459-2466. https://doi.org/10.1016/j.cej.2017.11.171.
  30. Liu, X., Jiang, J., Wang, G., Wang, J. and Xu, R. (2020), "Debonding analysis of curved RC beams externally bonded with FRP plates using CZM", Eng. Struct., 205, 110103. https://doi.org/10.1016/j.engstruct.2019.110103.
  31. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. https://doi.org/10.12989/scs.2019.30.3.271.
  32. Mallakpour, S. and Hatami, M. (2018), "Green and eco-friendly route for the synthesis of Ag@Vitamin B9-LDH hybrid and its chitosan nanocomposites: Characterization and antibacterial activity", Polym. (Guildf)., 154, 188-199. https://doi.org/10.1016/j.polymer.2018.08.077.
  33. Marthong, C. (2019), "Rehabilitation and strengthening of exterior RC beam column connections using epoxy resin injection and FRP sheet wrapping: Experimental study", Struct. Eng. Mech., 72(6), 723. https://doi.org/10.12989/sem.2019.72.6.723.
  34. Mugahed Amran, Y.H., Alyousef, R., Rashid, R.S.M., Alabduljabbar, H. and Hung, C.C. (2018), "Properties and applications of FRP in strengthening RC structures: A review", Struct., 16, 208-238. https://doi.org/10.1016/j.istruc.2018.09.008.
  35. Mulian, G. and Rabinovitch, O. (2020), "Identification of interfacial properties of FRP plated beams using debonding dynamics", Struct., 25, 297-310. https://doi.org/10.1016/j.istruc.2020.03.003.
  36. Murthy, A.R., Gandhi, P., Pukazhendhi, D.M., Samuel, F.G. and Vishnuvardhan, S. (2022), "Flexural behaviour of GFRP reinforced concrete beams under cyclic loading", Struct. Eng. Mech., 84(3), 361. https://doi.org/10.12989/sem.2022.84.3.361.
  37. Panahi, M., Zareei, S.A. and Izadic, A. (2021), "Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars", Case Stud. Constr. Mater., 15, e00601. https://doi.org/10.1016/j.cscm.2021.e00601.
  38. Park, J. and Yoo, J. (2013), "Axial loading tests and load capacity prediction of slender SHS stub columns strengthened with carbon fiber reinforced polymers", Steel Compos. Struct., 15(2), 131. https://doi.org/10.12989/scs.2013.15.2.131.
  39. Park, J. and Yoo, J. (2015), "Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet", Steel Compos. Struct., 19(2), 441. https://doi.org/10.12989/scs.2015.19.2.441.
  40. Prashob, P.S., Shashikala, A.P. and Somasundaran, T.P. (2017), "Behaviour of carbon fiber reinforced polymer strengthened tubular joints", Steel Compos. Struct., 24(4), 383. https://doi.org/10.12989/scs.2017.24.4.383.
  41. Rahmdel, J.M., Vahid-Vahdattalab, F., Shafei, E. and Zirakian, T. (2021), "Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers", Struct. Eng. Mech., 77(6), 735. https://doi.org/10.12989/sem.2021.77.6.735.
  42. Ramezanzadeh, B., Ahmadi, A. and Mahdavian, M. (2016), "Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets", Corros. Sci., 109, 182-205. https://doi.org/10.1016/j.corsci.2016.04.004.
  43. Razaqpur, A.G., Lamberti, M. and Ascione, F. (2020), "Debonding evolution in nonlinear FRP-retrofitted RC beams with cohesive interface", Compos. Struct., 236(15 March), 111858. https://doi.org/10.1016/j.compstruct.2020.111858.
  44. Sharma, G., Sharma, S. and Sharma, S.K. (2022), "Moment-curvature behavior of steel and GFRP reinforced beam using AE and DIC Techniques", Struct. Eng. Mech., 84(2), 253. https://doi.org/10.12989/sem.2022.84.2.253.
  45. Soliman, E., Kandil, U.F. and Taha, M.R. (2012), "Limiting shear creep of epoxy adhesive at the FRP-concrete interface using multi-walled carbon nanotubes", Int. J. Adhes. Adhes., 33(4), 36-44. https://doi.org/10.1016/j.ijadhadh.2011.09.006.
  46. Song, X., Huang, Y., Huang, Q. and Zheng, H. (2021), "Fatigue behavior of GFRP-concrete composite decks: An experimental and numerical study", Struct. Eng. Mech., 80(3), 301. https://doi.org/10.12989/sem.2021.80.3.301.
  47. Syed Ibrahim, S., Kandasamy, S., Pradeepkumar, S. and Subash Chandra Bose, R. (2021), "Effect of discrete steel fibres on strength and ductility of FRP laminated RC beams", Ain Shams Eng. J., 12(2), 1329-1337. https://doi.org/10.1016/j.asej.2020.10.005.
  48. Triantafyllou, G.G., Rousakis, T.C. and Karabinis, A.I. (2017), "Analytical assessment of the bearing capacity of RC beams with corroded steel bars beyond concrete cover cracking", Compos. Part B Eng., 119, 132-140. https://doi.org/10.1016/j.compositesb.2017.03.036.
  49. Votsis, R.A., Stratford, T.J., Chryssanthopoulos, M.K. and Tantele, E.A. (2017), "Dynamic assessment of a FRP suspension footbridge through field testing and finite element modelling", Steel Compos. Struct., 23(2), 205. https://doi.org/10.12989/scs.2017.23.2.205.
  50. Wang, X., Tang, F., Qi, X. and Lin, Z. (2019), "Mechanical, electrochemical, and durability behavior of graphene nanoplatelet loaded epoxy-resin composite coatings", Compos. Part B Eng., 176(5), 107103. https://doi.org/10.1016/j.compositesb.2019.107103.
  51. Wei, L., Liu, X., Gao, Y., Lv, X., Hu, N. and Chen, M. (2021), "Synergistic strengthening effect of titanium matrix composites reinforced by graphene oxide and carbon nanotubes", Mater. Des., 197(4), 109261. https://doi.org/10.1016/j.matdes.2020.109261.
  52. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  53. Xu, H., Song, G., Ma, L., Feng, P., Xu, L., Zhang, L., Zhao, Z., Jin, J., Chen, Z. and Li, X. (2021), "Evolution of properties and enhancement mechanism of large-scale three-dimensional graphene oxide-carbon nanotube aerogel/polystyrene nanocomposites", Polym. Test., 97, 107158. https://doi.org/10.1016/j.polymertesting.2021.107158.
  54. Yao, X., Gao, X., Jiang, J., Xu, C., Deng, C. and Wang, J. (2018), "Comparison of carbon nanotubes and graphene oxide coated carbon fi ber for improving the interfacial properties of carbon fi ber/epoxy composites", Compos. Part B, 132, 170-177. https://doi.org/10.1016/j.compositesb.2017.09.012.
  55. Yuan, X., Bai, H., Sun, C., Li, Q. and Song, Y. (2022), "Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs", Struct. Eng. Mech., 84(3), 375. https://doi.org/10.12989/sem.2022.84.3.375.
  56. Zhang, Y.J., He, P.Y., Zhang, Y.X. and Chen, H. (2018), "A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance", Chem. Eng. J., 334(13), 2459-2466. https://doi.org/10.1016/j.cej.2017.11.171.