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The localized surface-plasmon resonance has drawn great attention, due to its unique optical prop-
erties. In this work a general theoretical description of the dipole mode is proposed, using the forced 
damped harmonic oscillator model of free charges in an ellipsoid. The restoring force and driving force 
are derived in the quasistatic approximation under general conditions. In this model, metal is regarded as 
composed of free charges and bound charges. The bound charges form the dielectric background which 
has a dielectric function. Those free charges undergo a collective motion in the dielectric background 
under the driving force. The response of free charges will not be included in the dielectric function like 
the Drude model. The extinction and scattering cross sections as well as the damping coefficient from 
our model are verified to be consistent with those based on the Drude model. We introduce size effects 
and modify the restoring and driving forces by adding the dynamic depolarization factor and the radia-
tion damping term to the depolarization factor. This model provides an intuitive physical picture as well 
as a simple theoretical description of the dipole mode of the localized surface-plasmon resonance based 
on free-charge collective motion.
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I. INTRODUCTION

Metallic nanostructures have attracted widespread at-
tention for their fantastic optical properties, due to the 
abundant free electrons in metals. When these electrons are 
constrained within a limited volume, their collective motion 
(which is driven by the external light field and modulated 
by bound charges at the interface of the metal and the me-
dium) generates the localized surface-plasmon resonance 
(LSPR) [1]. The LSPR of metallic nanoparticles exhibits 
intense absorption and scattering cross-sections in the far 
field. It can generate large local electric field enhancement 
in some regions [2, 3], and a local heat source from the 

plasmonic nanoparticles [3, 4]. The resonance wavelengths 
can be tuned by size and shape of the plasmonic nanopar-
ticles, while recently doped semiconductors have attracted 
extra attention for tunable resonances due to their variable 
carrier density [3, 5–9]. The LSPR has applications in a 
wide range of fields, including biosensors [7, 10–12], solar 
cells [8, 12, 13], nanoantennae [14], and therapeutic appli-
cations [3, 4, 6, 15–17].

The LSPR is the interaction of the incident light with 
metal nanoparticles, which can be described by Maxwell’s 
equations and the dielectric function of the metal (in the 
Drude model). For quantitative research, numerical simu-
lations are performed using many algorithms, such as the 
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finite-difference time-domain (FDTD) and discrete-dipole 
approximation (DDA), for arbitrary shapes of particles. 
Mie theory [18] provides a rigorous solution for spherical 
nanoparticles. A typical way in textbooks to analyze the 
LSPR is by considering a dielectric sphere with the dielec-
tric function of the metal under a uniform external field, in 
a quasistatic approach [18]. For the electric dipole mode, 
the resonance condition (Frӧhlich condition) can be derived 
from one coefficient of Mie theory, or the quasistatic ap-
proach with the dielectric function of the Drude model [18]. 
As we all know, the Drude model arises from the collec-
tive motion of free charges in metals, so the LSPR in Mie 
theory and the quasistatic approximation is associated with 
the collective motion of free charges through the dielec-
tric function of the metal. Additionally, the hydrodynamic 
model [19] and the hybridization model [20] are also used 
to describe the LSPR based on the collective motion of free 
electrons, but those models are not as intuitive as the forced 
damped harmonic oscillator model. A more intuitive physi-
cal picture is that free charges oscillate within the domain 
of a nanoparticle under the electric field of the incident 
light. The harmonic oscillator model is reasonable for this 
collective motion. This model can explain many phenom-
ena, including damping [21], coupling [22], and resonance 
frequencies in the near field and far field [23, 24]. There is 
no thorough theoretical derivation for the LSPR based on 
this model, except for our previous work [1]. In that work, 
the metal is divided into free charges and the dielectric 
background, which has a dielectric function. Free charges 
generate the collective motion under the electric field, and 
the influence of free charges does not appear in the dielec-
tric function. We have derived the theoretical description 
for the dipole mode of an ellipsoidal nanoparticle under 
the special condition that there is a π/2 phase difference 
between the displacement and the external field at the reso-
nance frequency. Nevertheless, this is not a general theo-
retical description, for some important information is not 
contained in it due to this special condition. Moreover, size 
effects are also not included in the previous results. Accord-
ing to the modified long-wavelength approximation, the 
dynamic depolarization factor and radiation damping term 
can be introduced into the forced damped harmonic oscilla-
tor model [25, 26]. 

In this paper, we first derive a theoretical description 
based on a subwavelength ellipsoid under general condi-
tions. The restoring force, driving force, and extinction and 
scattering cross sections of the LSPR and its resonance fre-
quencies, are obtained using the forced damped harmonic 
oscillator model. We then compare the results, including 
the extinction and scattering cross sections, from our model 
to those from the dielectric function of the Drude model. 
To account for the size effects, we introduce the dynamic 
depolarization factor and radiation damping term into the 
harmonic oscillator model. Finally, we discuss some con-
clusions from the harmonic oscillator model.

II. THEORETICAL MODEL

The relative dielectric function of the metal ε (ω ) al-
ways includes a contribution from free charges, which is 
described by the Drude model. ε(ω) is usually described as 
follows [27]:

�

� �

� � � �� � p pi
ω ω γ

ε ω ε
ω γ ω γ ω∞= − +

+ + �� � ����

� �

, (1)

where ω p is the plasma frequency and γ  is the damping co-
efficient. The first term ε ∞ is the high-frequency dielectric 
function arising from the bound charges of the lattice, and 
the second and third terms arise from the Drude model 
based on free charges.

In our model, the metal is divided into two parts: The di-
electric background, and free charges. Free charges include 
free electrons (negative) and the related lattice background 
(positive), with equal charge densities. In other words, the 
metal is regarded as a dielectric that contains equal nega-
tive and positive free charges. The bound charges of the di-
electric background generate the relative dielectric function 
ε∞. The response of free charges to light is considered as a 
collective motion driven by an external field, rather than in-
cluded in the dielectric function of the metal. The approach 
in which the metal is divided into two parts is similar to 
that of the Huang equations, in which the ionic crystal is di-
vided into two parts: the positive and negative ions, and the 
bound charges of those ions [28].

When the particle size, such as the radius a, is much 
smaller than the wavelength λ  of light, for example a < 
λ /20 [29], the particle is regarded to be in a uniform ex-
ternal field, which is the quasistatic approximation (the 
electrostatic approach) [18]. To obtain analytical results, 
the particle is usually assumed to be a sphere to derive the 
fundamental conclusions. Sometimes it is assumed to be an 
ellipsoid, to include the shape effects. On the other hand, 
many practical nanoparticles can be approximated as ellip-
soids. 

A dielectric ellipsoid containing free charges with rela-
tive dielectric function ε∞ is located in a medium with rela-
tive dielectric function εm under a uniform external electric 
field E0, as shown in Fig. 1. The magnitude of the charge 
density of the positive and negative free charges in this el-
lipsoid is set as ρ. Two ellipsoids formed by the positive 
and negative free charges separate from each other under 
the external field, and the distance between the centers of 
the two ellipsoids is set as d, which can be regarded as the 
displacement of the oscillator formed by free charges. a and 
b are the principal semiaxes of the ellipsoid.

When the light irradiates this ellipsoid, free charges ac-
cumulate on its surface and generate an additional electric 
field. The electric field in the ellipsoid includes the exter-
nal electric field, the additional electric field from the ac-
cumulated surface free charges, and that from the surface 
bound charges from the lattice and the surrounding me-
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dium. The collective motion of free charges driven by the 
external field in a nanoparticle should be a forced motion 
with damping effects, so it is reasonable to use the forced 
damped harmonic oscillator model to describe the LSPR.

In the electrostatic approach, the potential in space satis-
fies the Laplace equation, 𝛁2φ1 = 0 and 𝛁2φ2 = 0, where φ1 
and φ2 are the potential inside and outside the ellipsoid re-
spectively. The potential is solved in ellipsoidal coordinates 
[30, 31]. The relationship between ellipsoidal coordinates 
and Cartesian coordinates is 

�

� � �

� � � ����x y z
a u b u c u

+ +
+ + +

�� � ����

� �

, (2)

where a, b, and c are the principal semiaxes of the ellipsoid. 
This equation has three different real roots: ξ , η , and ζ .

The potential of a uniform external field E0 along the x 
axis is written as

�

� � �

� � � � � � �

� �� �� �
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a a a
E x E

b a c a

ξ η ς
ϕ

+ + +
= − =

− −
�

�� ����

� �

. (3)

The potential inside and outside the ellipsoid can be 
written as

�

�
� � � �Cϕ ϕ ϕ= = �� � � � ����

� �

, (4)

�

� � � � ��� ����
� �� �s

dsC
R s a

∞� �
= + = � �

� �
�ξϕ ϕ ϕ ϕ �� ����

� �

, (5)

where φ'2 is from the surface charges of the ellipsoid. φ'2 is 
set as

�

� �� �� � �Fϕ ϕ ξ ��� � � � ����

� �

. (6)

The expression for F(ξ) is

�

� �� �
� �� �s

dsF C
R s a

∞
= �ξξ ��� � � ����

� �

, (7)

where 

�

� � �� �� �� �sR s a s b s c= + + + ��

� �

.
The Laplace equation including F(ξ) is

�

�
�

� � � � �� �d F dF d n R a
d d d

+ + =ξ ξ
ξ ξ ξ

�� � ����

� �

. (8)

According to the boundary conditions (ξ  = 0),

�

�� ��H Hϕ ϕ= �� � � � ����

� �

, (9)

�
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� � ���H H

m fn n∞

∂ ∂
− +

∂ ∂
ϕ ϕ

ε ε ε ε σ �� � �����

� �

, (10)

where σ f is the surface free-charge density function that we 
set. φ1,H and φ2,H are the potential inside and outside the el-
lipsoid in our harmonic oscillator model respectively. The 
subscript H indicates the harmonic model. The normal de-
rivative of the potential in ellipsoidal coordinates is

�

�n h
ϕ ϕ

ξ
∂ ∂=
∂ ∂ �� � � �����

� �

, (11)

where 

�

� � �� � � �h Rξξ η ξ ζ= − − �
� �

.
If there are no free charges, or the response of free 

charges is attributed to the dielectric function as in the 
Drude model, the boundary conditions are 

�

�� ��D Dϕ ϕ= �� � � � �����

� �

, (12)

�

�� ��
� � ����D D

m n n
∂ ∂

− +
∂ ∂
ϕ ϕ

ε ε εε �� � ������
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, (13)

where the subscript D indicates the Drude model. Those 
are the usual boundary situations for an ellipsoid with the 
relative dielectric function ε (ω). Here we give the well-
known results in textbooks [18], to compare to our results 
later. The potential inside and outside the ellipsoids with the 
Drude model are obtained as follows:

�

�� �� ���� �
m

D x
m m n

=
−

εϕ ϕ
ε ε ε

�� � � �����

� �

, (14)

�

�� �� � �
� ���
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m

D x
m m s

abc ds
n R s a

∞� �−= −� �+ −� �
�ξ

ε εϕ ϕ
ε ε ε

�� ������

� �

, (15)

where n(x) is the depolarization factor along the x direction, 
which is closely associated with the shape. The depolariza-
tion factor is

�

� �
��� � �

x

s

abc dsn
R s a

∞
=

+�
�� � ������

� �

. (16)

Considering a point far away from the ellipsoid, the dis-
tance between them is defined as r. When r → ∞, ξ → ∞ in 
the ellipsoidal coordinates, and then ξ ≈ r2 [31]. 

 
 

FIG. 1. Schematic diagram of the forced damped harmonic 
oscillator model. In this model, free charges in a dielectric 
ellipsoid with relative dielectric function ε ∞ are divided into 
two ellipsoids of equal and opposite charge density under the 
external field E0. The distance between the centers of the two 
ellipsoids is d. The relative dielectric function of the medium 
is εm. a and b are the principal semiaxes of the ellipsoid.
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�
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. (17)

So, the potential φ2'(r) is

�

( )
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−
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where V = 4πabc/3 is the volume of the ellipsoid. The po-
tential is expressed in terms of the dipole moment as φ2'(r) 
= p/4πε 0ε mr2. Thus, the dipole moment pD of the ellipsoid 
with the Drude model can be obtained:

�

( )� �
�
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D m x

m m

p abc E
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−=
−

ε επ ε ε
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. (19)

Then, according to p = ε 0 εmαE0, the polarizability αD is
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ε εα π
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The extinction and scattering cross sections based on the 
Drude model are expressed as follows:
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where k is the wave vector.
If the scattering is small compared to the absorption, 

Cext,D can be replaced by Cabs,D in Eq. (21) [18].

III. RESULTS AND DISCUSSION

3.1.  General Theoretical Results for the Harmonic 
Oscillator Model 

Following Eqs. (9) and (10), we obtain the coefficients 
C1 and C2 as follows:
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The potential inside (φ1,H) and outside (φ2,H) the ellip-
soids can be written as follows:
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The total surface charge density σ total, including free 
charges and bound charges, is
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(27)

The electric field generated by free charges in an ellip-
soid is Ef = ρdn(x)/ε 0 [1], where d is displacement between 
the centers of the two ellipsoids formed by the positive and 
negative free charges. 

The total electric field from free charges and bound 
charges in the ellipsoid is

�

�����
�����

� � � ��
�� � � �

�
� � � �

f
f

x xm
x x

m m m m

E E

dE n n
n n

σ
σ

ε ε ρ ε
ε ε ε ε ε ε

∞

∞ ∞

=

−= +
+ − + −

�������

� �

,
(28)

where the surface free-charge density σ f is expressed as σ f = 
ρxd/2a2h1 [1]. The first term is related to the driving force, 
for it is associated with the external field. The second term 
is related to the restoring force, for it is proportionate to the 
displacement d. Then the equation of motion is

�

( )� �����md m d e E Eγ+ = −�� � �� � �����

� �

. (29)

It can further be expressed as follows:
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where the restoring force is
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m m

F m d m d
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ω ω
ε ε ε∞

= − = −
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where ω 2
p = ρe/ε 0m; The constants e, m, and ε 0 are the el-

ementary charge, the free electron’s mass, and the vacuum 
permittivity respectively. 

The actual driving force in Eq. (30) does not equal the 
force of the incident light field; it is weakened by the di-
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electric functions of the medium and dielectric background.
The resonance frequency is

�

�
�
� �R

γω ω= −
�� � � �����

� �

. (32)

Because the damping coefficient γ  is practically much 
smaller than ω 0, the above equation can be approximated as 
follows:
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From Eq. (30), the displacement d can be obtained as 
follows:
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where
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Following Eqs. (17)–(19), the dipole moment of the el-
lipsoid is expressed as follows:
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The polarization of the metal arises from the dipole mo-
ment formed by the positive and negative free charges and 
the polarization of the bound charges in the dielectric back-
ground.

The polarizability is 
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The extinction and scattering cross sections can be ex-
pressed as follows:
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The extinction and scattering cross sections obtained 
from the two models (harmonic oscillator model and Drude 
model) are equivalent. The extinction cross section can be 
written as follows:
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where ρ  is converted to ω p.
In the same way, the scattering cross section can be writ-

ten as follows:
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According to the extinction and scattering cross sections 
obtained above, their resonance frequencies can be obtained 
as follows:
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0 , (43)
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For a sphere (n(x) = 1/3),
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For the scattering cross section, the resonance frequency 
obtained by Eq. (42) is analytical but cumbersome, so we 
give the approximate result as shown in Eq. (44), under the 
condition ω 2

0 >>  γ
2. Under this condition the third and fourth 

terms in Eq. (44) are relatively small, so ω sca is close to ω 0 
but less than it for the usual high-frequency dielectric func-
tions of materials, the effect of which can be found in many 
studies [32, 33]. 

3.2.  Dynamic Depolarization Factor and Radiation Term
In the quasistatic approximation, size effects are not 

included. If considering size effects, the modified long-
wavelength approximation [25, 26] can be used. The depo-
larization field Ep is 

�

� �
�

x
pE n P ε= − ��� � �����

� �

. (46)

If considering the dielectric retarded polarization and 
radiation damping, the dynamic depolarization factor and 
radiation damping term can be introduced. Further, the de-
polarization field Ep can be written as follows:
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� �x x
p

P PE n n b k ib k
ε ε
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, (47)

where neff
(x) is the effective depolarization factor with the 

inclusion of the finite-wavelength correction [26], k is the 
wave vector, and b1 and b2 are coefficients. b1k

2 is associ-
ated with the dielectric retarded polarization, and b2k

3 is 
associated with the radiation damping [25]. In addition, for 
oblate and prolate ellipsoids, the depolarization factors and 
the dynamic depolarization factors and radiation terms can 
be found in the [26, 34, 35].

The results under the modified long-wave approximation 
can be obtained by replacing n(x) with neff

(x) [26]. The electric 
field in the ellipsoid is
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Thus, the equation of motion is
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where
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The intrinsic frequency ω 0 is
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where the intrinsic frequency or the restoring force is af-
fected by the high-frequency dielectric function of the 
particle ε ∞, the dielectric function of the medium ε m, the 
plasma frequency ω p, and the dynamic depolarization factor 
and the radiation damping term.

The damping term is
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where the first term arises from the damping of the collec-
tive motion of free charges, and the second term arises from 
the radiation damping of the electric dipole formed by the 
free and bound charges. The driving force has a phase delay 
compared to the force of the external electric field E0, as 
shown in Eq. (50), which arises from the radiation damping 
of the dipoles. 

3.3. Discussion
The displacement of the harmonic oscillator is that be-

tween the positive and negative free charges, and its magni-
tude is influenced by the high-frequency dielectric function 
of the particle, the dielectric function of the medium, and 
the dynamic depolarization factor and the radiation damp-
ing term. In our model the displacement is related to free 
charges, as shown in Fig. 1. The maximum displacement 
corresponds to the maximum accumulation of surface free 
charges.

The actual driving force is not equal to the force of the 
incident light field. It is affected by the dielectric function 
of the surrounding medium, the dielectric function of the 
dielectric background, and the shape factor n(x). Considering 
also the dynamic depolarization factor and radiation term, 
the actual driving force is also affected by them. Further-
more, when the radiation term is considered, a phase delay 
exists between the actual driving force and the external 
field.

It is interesting that the peak position of the extinction 
cross section is simply the intrinsic frequency ω 0 of the 
material. The resonance frequency of the scattering cross 
section is slightly smaller than that of the extinction cross 
section. The resonance frequency of the harmonic oscillator 
equation [see Eq. (32)] is lower than ω 0, which is attributed 
to the peak position for the near field [23]. In the oscillator 
model, this resonant frequency generates the maximum dis-
placement of the oscillator. 

As we know, when the frequency tends to zero, the 
imaginary part of the dielectric function of the Drude model 
as shown in Eq. (1) will tend to infinity, which is the defi-
ciency of the Drude model. The Drude model is not used 
in our harmonic oscillator model. In our model there is no 
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conflict, because free charges always accumulate on the 
surfaces and generate the dipole moment, even when the 
frequency tends to zero. Our model avoids the limitation 
of the dielectric function of the metal. The two models are 
based on the same physical picture, so they are equivalent, 
and the same extinction and scattering cross section results 
can be obtained. In addition, the damping γ  for both mod-
els is the same, due to the same collective motion of free 
charges. 

The forced damped harmonic oscillator model, which is 
a very intuitive physical picture for the LSPR, can be used 
to understand the physical source of the LSPR caused by 
the collective motion of electrons in metal. Based on this 
harmonic oscillator model, the LSPR is no longer limited to 
metals. Semiconductors with free charges can also exhibit 
the LSPR, and the resonance can be modulated by the den-
sity of the doping [3, 5–9]. In recent years a few carriers in 
a small nanoparticle, even four carriers in a ZnO nanopar-
ticle [36], have been found to sustain the surface plasmon 
from the collective motion of those carriers [9]. In under-
standing these phenomena, the picture of carriers oscil-
lating under the driving field is more intuitive than that of 
the collective motion of the carriers, which is attributed to 
the dielectric function of the nanoparticle. In the harmonic 
oscillator model, the density of the carriers determines the 
magnitude of the scattering and extinction, and the reso-
nance frequencies. Our model provides a basic theoretical 
understanding of plasmonic phenomena.

IV. CONCLUSIONS

We have derived analytical expressions for the LSPR, 
based on the collective motion of free charges by the forced 
damped oscillator model. The extinction cross section 
and scattering cross section and their resonance frequen-
cies were derived under the harmonic oscillator model, 
the results of which are consistent with those of the Drude 
model. This means those two models are equivalent, due to 
the same collective motion picture, and their parameters are 
the same, such as γ . After we further introduce size effects, 
the expression can be extended by including the effective 
depolarization factor in the harmonic oscillator model. The 
restoring force and the driving force will be modified by the 
high-frequency dielectric function of the dielectric back-
ground, the dielectric function of the medium, the depolar-
ization factor of the ellipsoid, the dynamic depolarization 
term, and the radiation term. The driving force has a phase 
shift from the external field, due to the radiation term. Ac-
cording to our model, the dipole plasmon mode arises from 
the collective motion of free charges, modulated by the 
bound charges and radiation of the dipole moment formed 
by free charges and the bound charges. This theoretical 
model describes an intuitive picture of the LSPR that can 
be applied to particles containing free charges in metals or 
semiconductors.
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