DOI QR코드

DOI QR Code

Real-scale field testing for the applicability examination of an improved modular underground arch culvert with vertical walls

  • Tae-Yun Kwon (Department of Civil and Infrastructure Engineering, Gyeongsang National University) ;
  • Jin-Hee Ahn (Department of Civil and Infrastructure Engineering, Gyeongsang National University) ;
  • Hong-duk Moon (Department of Civil and Infrastructure Engineering, Gyeongsang National University) ;
  • Kwang-Il Cho (Research Team, Tekhan Inc.) ;
  • Jungwon Huh (Department of Civil Engineering, Chonnam National University)
  • 투고 : 2023.01.06
  • 심사 : 2023.08.04
  • 발행 : 2023.06.25

초록

In this study, an improved modular arch system with the lower arch space composed of a precast arch block and an outrigger was proposed as an underground culvert, and its applicability and structural behaviors were confirmed. This modular arch culvert structure with vertical walls was designed using precast blocks and by adjusting the placement spacing of concrete blocks to the upper part form an arch shape and the lower part form a vertical wall shape, based on previously researched modular arch systems. Owing to the vertical wall of the proposed modular arch system, it is possible to secure a load-carrying capacity and an arch space that can sufficiently resist the earth pressure generated from the backfill soil and loading on the arch system. To verify the structural characteristics, and applicability of the proposed modular precast arch culvert structure, a full-scale modular culvert specimen was fabricated, and a loading test was conducted. By examining its construction process and loading test results, the applicability and constructability of the proposed structure were analyzed along with its structural characteristics. In addition, its the structural predictability and safety for the applicability were evaluated by comparing the construction process and loading test results with the FE analysis results.

키워드

과제정보

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 22TBIP-C162228).

참고문헌

  1. ABAQUS (2014), Abaqus analysis user's manual version 6.14, Dassault Systems Simulia Corp.
  2. Alpaslan, E. and Karaca, Z. (2021), "Response surface-based model updating to detect damage on reduced-scale masonry arch bridge", Struct. Eng. Mech., Int. J., 79(1), 9-22. https://doi.org/10.12989/sem.2021.79.1.009
  3. Altunisik, A.C., Kanbur, B. and Genc, A.F. (2015), "The effect of arch geometry on the structural behavior of masonry bridges", Smart Struct. Syst., Int. J., 16(6), 1069-1089. https://doi.org/10.12989/SSS.2015.16.6.1069
  4. Altunisik, A.C., Kanbur, B., Genc, A.F. and Kalkan, E. (2019), "Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction", Geomech. Eng., Int. J., 18(2), 141-151. https://doi.org/10.12989/GAE.2019.18.2.141
  5. Bernini, J. (2001), "Overfilled precast concrete arch bridge structures", In: International Bridge Conference, Zurich, Switzerland, March.
  6. Bernini, J., Fitzsimons, N. and Heierli, W. (2000), "Overfilled Precast Concrete Arch Bridge Structures", Proceedings of 16th Congress of International Association for Bridge and Structural Engineering (IABSE), Lucerne, Switzerland, September.
  7. Bialy, M. and Skrzypiec, S. (2015), "Analysis of Interaction of Prefabricated Reinforced Concrete Tunnel with Subsoil", Technical Transactions, 2-S(24), 22-27.
  8. Boothby, T.E. (2001), "Load rating of masonry arch bridges", J. Eng., 6(2), 79-86. http://dx.doi.org/10.1061/(ASCE)1084-0702(2001)6:2(79)
  9. Boothby, T.E. and Fanning, P.J. (2001), Assessment methods for masonry arch bridges, Structural Faults & Repair-2001.
  10. Boothby, T.E. and Fanning, P.J. (2004), "Load rating of masonry arch bridges: Refinements", J. Bridge Eng., 9(3), 304-307. http://dx.doi.org/10.1061/(ASCE)1084-0702(2004)9:3(304)
  11. Chung, C.H., Joo, S.H., Choi, D.C. and Lee, J.Y. (2014a), "Structural Performance of Precast Concrete Arch with Reinforced Joint", J. Korean Soc. Civil Engr., 34(1), 29-47. [In Korean] https://doi.org/10.12652/Ksce.2014.34.1.0029
  12. Chung, C.H., Joo, S.H., Choi, D.C. and Lee, J.Y. (2014b), "Full-Scale Test on Precast Concrete Arch Bridge with Reinforced Joint and Backfill", J. Korean Soc. Civil Engr., 34(2), 389-402. [In Korean] https://doi.org/10.12652/Ksce.2014.34.2.0389
  13. Collings, D. (2005), Steel-Concrete Composite Bridges, Thomas Telford, Washington, DC, USA.
  14. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Quarter. Appl. Mathe., 10(2), 157-165. https://doi.org/10.1090/qam/48291
  15. Gupta, A., Taylor, S., Long, A., Kirkpatrick, J. and Hogg, L. (2006), "A Flexible Concrete Arch System for Durable Bridges", In: IABSE Symposium: Responding to Tomorrow's Challenges in Structural Engineering, Budapest, Hungary, September.
  16. Halding, P.S., Hertz, K.D. and Schmidt, J.W. (2015), "Precast Pearl-Chain concrete arch bridges", Eng. Struct., 103(15), 214-227. https://doi.org/10.1016/j.engstruct.2015.09.012
  17. Hernandez-Montes, E., Aschheim, M. and Gil-Martin, L.M. (2005), "The buried arch structural system for underground structures", Struct. Eng. Mech., Int. J., 20(1), 69-83. https://doi.org/10.12989/sem.2005.20.1.069
  18. Hertz, K.D. (2009), "Super-light concrete with pearl-chains", Magaz. Concrete Res., 61(8), 655-663. https://doi.org/10.1680/macr.2008.61.8.655
  19. Hutchinson, D. (2004), "Application and Design of Segmental Precast Arches", ASCE Proceedings of Geotechnical Engineering for Transportation Projects (GeoTrans), Los Angeles, CA, USA, July.
  20. Jeon, S.H., Moon, H.D., Sim, C. and Ahn, J.H. (2021a), "Construction stage analysis of a precast concrete buried arch bridge with steel outriggers from full-scale field test", Structures, 29, 1671-1689. https://doi.org/10.1016/j.istruc.2020.12.050
  21. Jeon, S.H., Yim, H.J., Huh, J.W., Cho, K.I. and Ahn, J H. (2021b), "Full-scale field testing of a precast concrete buried arch bridge with steel outriggers: Field loading test", Eng. Struct., 242, 112563, https://doi.org/10.1016/j.engstruct.2021.112563
  22. Karalar, M. and Yesil, M. (2021), "Effect of near-fault earthquakes on a historical masonry arch bridge (Konjic Bridge)", Earthq. Struct., Int. J., 21(2), 125-136. https://doi.org/10.12989/eas.2021.21.2.125
  23. Lacidogna, G. and Accornero, F. (2018), "Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study", Curved Layered Struct., 5, 1-9. https://doi.org/10.1515/cls-2018-0001
  24. Long, A., McPolin, D., Kirkpatrick, J., Gupta, A. and Courtenay, D. (2014), "FlexiArch: from concept to practical applications", Struct. Engr., 92(7), 10-15.
  25. Nguyen, T.V., Seo, J.W., Ahn, J.H., Haldar, A. and Huh, J.W. (2021), "Finite element anlaysis-aided eismic behavior examination of modular underground arch bridge", Tunell. Undergr. Space Technol., 118, 104166. https://doi.org/10.1016/j.tust.2021.104166
  26. Nguyen, T.V., Ahn, J.H., Haldar, A. and Huh, J.W. (2022), "Fragility-based seismic performance assessment of modular underground arch bridge", Structures, 39, 1218-1230. https://doi.org/10.1016/j.istruc.2022.04.005
  27. Ong, C.Y., Choong, K.K., Tan, G.E. and Ong, T.B. (2015a), "Trends and Development of Precast Concrete Closed Spandrel Arch Bridge Systems", Appl. Mech. Mater., 802, 295-300. https://doi.org/10.4028/www.scientific.net/AMM.802.295
  28. Ong, C.Y., Choong, K.K., Tan, G.E. and Ong, T.B. (2015b), "Precast concrete closed spandrel arch bridge system as viable alternative to conventional beam bridge system", Appl. Mech. Mater., 802, 261-266. https://doi.org/10.4028/www.scientific.net/AMM.802.261
  29. Radic, J., Savor, Z. and Kindij, A. (2005), "Innovations in concrete arch bridge design", Proceedings of the 4th International Conference on Current and Future Trends in Bridge Design, Construction and Maintenance, Kuala Lumpur, Malaysia, October.
  30. Segrestin, P. and Brockbank, W.J. (1995), "Precast arches as innovative alternative to short-span bridges", Proceedings of the 4th International Bridge Engineering Conference, San Francisco, CA, USA, August.
  31. Tan, G.E., Ong, T.B., Choong, K.K. and Ong, C.Y. (2013), "A New Form of Precast Closed Spandrel Arch Bridge System", Proceedings of the 7th International Conference on Arch Bridges, Trogir-Split, Croatia, October.
  32. Tan, G.E., Ong, T.B., Ong, C.Y. and Choong, K.K. (2014), "Development and standardisation of new precast concrete open spandrel arch bridge system", Proceedings of the 37th IABSE symposium in Madrid, Madrid, Spain, September.
  33. Taylor, S.E., Robinson, D., Ritchie, N., Mcllwaine, K. and Gupta, A. (2006), "Testing of Half-scale Model Flexible Concrete Arches", In: Bridge and Infrastructure Research in Ireland: Symposium 2006.
  34. Yoo, C. and Choi, J. (2018), "Effect of construction sequence on three-arch tunnel behavior-Numerical investigation", Geomech. Eng., Int. J., 15(3), 911-917. https://doi.org/10.12989/gae.2018.15.3.911