Acknowledgement
This study was supported by the Technology Innovation Program (10082572, Development of Low Energy Desalination Water Treatment Engineering Package System for Industrial Recycle Water Production) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2018R1A5A1024127).
References
- WMO, P. Taalas, 2021 State of climate serivces: Water, 2021.
- A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, Advances in seawater desalination technologies, Desalination, 221, 47-69 (2008). https://doi.org/10.1016/j.desal.2007.01.067
- K. Elsaid, M. Kamil, E. T. Sayed, M. A. Abdelkareem, T. Wilberforce, and A. Olabi, Environmental impact of desalination technologies: A review, Sci. Total Environ., 748, 141528 (2020).
- Future Strategy Division, Ministry of Economy and Finance, "2050 Carbon Neutrality" Promotion Strategy, Korea Policy Briefing (2020).
- S. Fankhauser, S. M. Smith, M. Allen, K. Axelsson, T. Hale, C. Hepburn, J. M. Kendall, R. Khosla, J. Lezaun, E. Mitchell-Larson, M. Obersteiner, L. Rajamani, R. Rickaby, N. Seddon, and T. Wetzer, The meaning of net zero and how to get it right, Nat. Clim. Chang., 12, 15-21 (2022). https://doi.org/10.1038/s41558-021-01245-w
- H. Joo and J. Yoon, Basic concept of carbon neutral engineering in the chemical industry to overcome the climate crisis, Korean Ind. Chem. News, 25, 34-39 (2022).
- M. A. Alkhadra, X. Su, M. E. Suss, H. Tian, E. N. Guyes, A. N. Shocron, K. M. Conforti, J. P. de Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. G. Wenten, J. G. Santiago, T. A. Hatton, and M. Z. Bazant, Electrochemical methods for water purification, ion separations, and energy conversion, Chem. Rev., 122, 13547-13635 (2022). https://doi.org/10.1021/acs.chemrev.1c00396
- H. Yoon, J. Lee, S. Kim, and J. Yoon, Review of concepts and applications of electrochemical ion separation (EIONS) process, Sep. Purif. Technol., 215, 190-207 (2019). https://doi.org/10.1016/j.seppur.2018.12.071
- J. W. Blair and G. W. Murphy, Electrochemical demineralization of water with porous electrodes of large surface area, In: Saline Water Conversion, 206-223, American Chemical Society, Washington, D.C., United States of America (1960).
- Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - Past, present and future (a review), Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
- K. Singh, S. Porada, H. D. de Gier, P. M. Biesheuvel, L. C. P. M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115-134 (2019). https://doi.org/10.1016/j.desal.2018.12.015
- K. C. Smith, R. Dmello, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-Intercalation: PorousElectrode Modeling, J. Electrochem. Soc., 163, A530-A539 (2016). https://doi.org/10.1149/2.0761603jes
- J. G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. E. Suss, P. Liang, P. M. Biesheuvel, R. L. Zornitta, and L. C. P. M. de Smet, Recent advances in ion selectivity with capacitive deionization, Energy Environ. Sci., 14, 1095-1120 (2021). https://doi.org/10.1039/D0EE03145C
- J. H. Yeo and J. H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode, Desalination, 320, 10-16 (2013). https://doi.org/10.1016/j.desal.2013.04.013
- T. Pang and J. Shen, Visualizing the landscape and evolution of capacitive deionization by scientometric analysis, Desalination, 527, 115562 (2022).
- S. A. Hawks, A. Ramachandran, S. Porada, P. G. Campbell, M. E. Suss, P. M. Biesheuvel, J. G. Santiago, and M. Stadermann, Performance metrics for the objective assessment of capacitive deionization systems, Water Res., 152, 126-137 (2019). https://doi.org/10.1016/j.watres.2018.10.074
- S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020
- J. G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. E. Suss, P. Liang, P. M. Biesheuvel, R. L. Zornitta, and L. C. P. M. De Smet, Recent advances in ion selectivity with capacitive deionization, Energy Environ. Sci., 14, 1095-1120 (2021). https://doi.org/10.1039/D0EE03145C
- M. Pasta, C. D. Wessells, Y. Cui, and F. la Mantia, A desalination battery, Nano Lett., 12, 839-843 (2012). https://doi.org/10.1021/nl203889e
- P. Srimuk, X. Su, J. Yoon, D. Aurbach, and V. Presser, Chargetransfer materials for electrochemical water desalination, ion separation and the recovery of elements, Nat. Rev. Mater., 5, 517-538 (2020). https://doi.org/10.1038/s41578-020-0193-1
- H. Kim, J. Hong, K. Y. Park, H. Kim, S. W. Kim, and K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem. Rev., 114, 11788-11827 (2014). https://doi.org/10.1021/cr500232y
- T. Kim and J. Yoon, CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization, RSC Adv., 5, 1456-1461 (2015). https://doi.org/10.1039/C4RA11257A
- N. Kim, J. Lee, S. Kim, S. P. Hong, C. Lee, J. Yoon, and C. Kim, Short review of multichannel membrane capacitive deionization: Principle, current status, and future prospect, Appl. Sci. (Switzerland), 10, 683 (2020).
- S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020
- J. H. Choi, Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process, Sep. Purif. Technol., 70, 362-366 (2010). https://doi.org/10.1016/j.seppur.2009.10.023
- Z. H. Huang, M. Wang, L. Wang, and F. Kang, Relation between the charge efficiency of activated carbon fiber and its desalination performance, Langmuir, 28, 5079-5084 (2012). https://doi.org/10.1021/la204690s
- M. W. Ryoo, J. H. Kim, and G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid Interface Sci., 264, 414-419 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
- Z. Peng, D. Zhang, L. Shi, T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, J. Mater. Chem., 22, 6603-6612 (2012). https://doi.org/10.1039/c2jm16735b
- Z. Li, B. Song, Z. Wu, Z. Lin, Y. Yao, K. S. Moon, C. P. Wong, 3D porous graphene with ultrahigh surface area for microscale capacitive deionization, Nano Energy., 11, 711-718 (2015). https://doi.org/10.1016/j.nanoen.2014.11.018
- S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388- 1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
- J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196, 125-134 (2006). https://doi.org/10.1016/j.desal.2006.01.011
- R. Zhao, S. Porada, and P. M. Biesheuvel, A. Van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 330, 35-41 (2013). https://doi.org/10.1016/j.desal.2013.08.017
- Y. J. Kim and J. H. Choi, (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 71, 70-75. https://doi.org/10.1016/j.seppur.2009.10.026
- Lee, J. H., & Choi, J. H. (2012). The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 409, 251-256. https://doi.org/10.1016/j.memsci.2012.03.064
- Kim, Y. J., Kim, J. H., & Choi, J. H. (2013). Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI), J. Membr. Sci., 429, 52-57. https://doi.org/10.1016/j.memsci.2012.11.064
- M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Water desalination via capacitive deionization: What is it and what can we expect from it?, Energy Environ. Sci., 8, 2296-2319 (2015). https://doi.org/10.1039/C5EE00519A
- J. Yu, K. Jo, T. Kim, J. Lee, and J. Yoon, Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization, Desalination, 439, 188-195 (2018). https://doi.org/10.1016/j.desal.2018.04.011
- J. Lee, S. Kim, C. Kim, and J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques, Energy Environ. Sci., 7, 3683-3689 (2014). https://doi.org/10.1039/C4EE02378A
- J. Lee, K. Jo, J. Lee, S. P. Hong, S. Kim, and J. Yoon, Rocking-chair capacitive deionization for continuous brackish water desalination, ACS Sustain. Chem. Eng., 6, 10815-10822 (2018). https://doi.org/10.1021/acssuschemeng.8b02123
- S. il Jeon, H. R. Park, J. G. Yeo, S. Yang, C. H. Cho, M. H. Han, and D. K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6, 1471-1475 (2013). https://doi.org/10.1039/c3ee24443a
- C. Kim, P. Srimuk, J. Lee, M. Aslan, and V. Presser, Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes, Desalination, 425, 104-110 (2018). https://doi.org/10.1016/j.desal.2017.10.012
- P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343, 1210-1211 (2014). https://doi.org/10.1126/science.1249625
- K. Singh, S. Porada, H. D. de Gier, P. M. Biesheuvel, and L. C. P. M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115-134 (2019). https://doi.org/10.1016/j.desal.2018.12.015
- M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 12, 839-843 (2012). https://doi.org/10.1021/nl203889e
- H. Kim, J. Hong, K. Y. Park, H. Kim, S. W. Kim, and K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem., Rev., 114, 11788-11827 (2014). https://doi.org/10.1021/cr500232y
- F. Sauvage, L. Laffont, J. M. Tarascon, and E. Baudrin, Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2, Inorg. Chem., 46, 3289-3294 (2007). https://doi.org/10.1021/ic0700250
- A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 13, 813-819 (2001). https://doi.org/10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
- K. C. Smith and R. Dmello, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric na-intercalation: porouselectrode modeling, J. Electrochem. Soc., 163, A530-A539 (2016). https://doi.org/10.1149/2.0761603jes
- K. Singh, H. J. M. Bouwmeester, L. C. P. M. de Smet, M. Z. Bazant, and P. M. Biesheuvel, Theory of water desalination with intercalation materials, Phys. Rev. Appl., 9, 064036 (2018).
- J. Lee, S. Kim, and J. Yoon, Rocking chair desalination battery based on prussian blue electrodes, ACS Omega, 2, 1653-1659 (2017). https://doi.org/10.1021/acsomega.6b00526
- T. Kim, C. A. Gorski, and B. E. Logan, Low energy desalination using battery electrode deionization, Environ. Sci. Technol. Lett., 4, 444-449 (2017). https://doi.org/10.1021/acs.estlett.7b00392
- J. Ahn, J. Lee, S. Kim, C. Kim, J. Lee, P. M. Biesheuvel, and J. Yoon, High performance electrochemical saline water desalination using silver and silver-chloride electrodes, Desalination, 476, 114216 (2020).
- H. Joo, J. Lee, and J. Yoon, Short review: Timeline of the electrochemical lithium recovery system using the spinel LiMn2O4 as a positive electrode, Energies (Basel), 13, 6235 (2020).
- S. Kim, H. Joo, T. Moon, S. H. Kim, and J. Yoon, Rapid and selective lithium recovery from desalination brine using an electrochemical system, Environ. Sci. Process. Impacts, 21, 667-676 (2019). https://doi.org/10.1039/C8EM00498F
- E. J. Calvo, Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation, ACS Omega, 6, 35213-35220 (2021). https://doi.org/10.1021/acsomega.1c05516
- G. Luo, X. Li, L. Chen, Y. Chao, and W. Zhu, Electrochemical lithium ion pumps for lithium recovery: A systematic review and influencing factors analysis, Desalination, 548, 116228 (2023).
- S. K. Patel, M. Qin, W. S. Walker, and M. Elimelech, Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization, Environ. Sci. Technol., 54, 3663-3677 (2020). https://doi.org/10.1021/acs.est.9b07482
- S. Y. Pan, A. Z. Haddad, A. Kumar, and S. W. Wang, Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus, Water Res., 183, 116064 (2020).
- S. il Jeon, N. Kim, K. Jo, J. Ahn, H. Joo, C. Lee, C. Kim, and J. Yoon, Improvement in the desalination performance of membrane capacitive deionization with a bipolar electrode via an energy recovery process, Chem. Eng. J., 439, 135603 (2022).
- Y. M. Volfkovich, Capacitive deionization of water (a review), Russ. J. Electrochem., 56, 18-51 (2020). https://doi.org/10.1134/S1023193520010097
- C. Zhang, D. He, J. Ma, W. Tang, and T. D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review, Water Res., 128, 314-330 (2018). https://doi.org/10.1016/j.watres.2017.10.024
- A. N. Shocron, R. S. Roth, E. N. Guyes, R. Epsztein, and M. E. Suss, Comparison of ion selectivity in electrodialysis and capacitive deionization, Environ. Sci. Technol. Lett., 9, 889-899 (2022). https://doi.org/10.1021/acs.estlett.2c00551
- A. Thamilselvan, A. S. Nesaraj, and M. Noel, Review on carbon-based electrode materials for application in capacitive deionization process, Int. J. Environ. Sci. Technol. (Tehran), 13, 2961- 2976 (2016). https://doi.org/10.1007/s13762-016-1061-9
- H. Joo, S. Kim, S. Kim, M. Choi, S. H. Kim, and J. Yoon, Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate, Environ. Sci.: Water Res. Technol., 6, 290-295 (2020). https://doi.org/10.1039/C9EW00756C
- H. Yoon, T. Min, J. Lee, G. Lee, M. Jeon, and A. Kim, Lithium-selective hybrid capacitive deionization system with a Ag-coated carbon electrode and stop-flow operation, Environ. Sci.: Water Res. Technol., 9, 500-507 (2023). https://doi.org/10.1039/D2EW00791F
- A. Kumar, G. Naidu, H. Fukuda, F. Du, S. Vigneswaran, E. Drioli, and J. H. Lienhard, Metals recovery from seawater desalination brines: Technologies, opportunities, and challenges, ACS Sustain. Chem. Eng., 9, 7704-7712 (2021). https://doi.org/10.1021/acssuschemeng.1c00785
- S. Kim, J. Kim, S. Kim, J. Lee, and J. Yoon, Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant, Environ. Sci.: Water Res. Technol., 4, 175- 182 (2018). https://doi.org/10.1039/C7EW00454K
- J. Kang, T. Kim, H. Shin, J. Lee, J. I. Ha, and J. Yoon, Direct energy recovery system for membrane capacitive deionization, Desalination, 398, 144-150 (2016). https://doi.org/10.1016/j.desal.2016.07.025
- J. Ahn, S. Kim, S. il Jeon, C. Lee, J. Lee, and J. Yoon, Nafioncoated Prussian blue electrodes to enhance the stability and efficiency of battery desalination system, Desalination, 500, 114778 (2021).
- L. Wang, Y. Zhang, K. Moh, and V. Presser, From capacitive deionization to desalination batteries and desalination fuel cells, Curr. Opin. Electrochem., 29, 100758 (2021).