DOI QR코드

DOI QR Code

Effective Approaches to Preventing Dendrite Growth in Lithium Metal Anodes: A Review

  • Jaeyun Ha (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Jinhee Lee (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yong-Tae Kim (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Jinsub Choi (Department of Chemistry and Chemical Engineering, Inha University)
  • Received : 2023.05.15
  • Accepted : 2023.07.05
  • Published : 2023.08.10

Abstract

A lithium metal anode with high energy density has the potential to revolutionize the field of energy storage systems (ESS) and electric vehicles (EVs) that utilize rechargeable lithium-based batteries. However, the formation of lithium dendrites during cycling reduces the performance of the battery while posing a significant safety risk. In this review, we discuss various strategies for achieving dendrite-free lithium metal anodes, including electrode surface modification, the use of electrolyte additives, and the implementation of protective layers. We analyze the advantages and limitations of each strategy, and provide a critical evaluation of the current state of the art. We also highlight the challenges and opportunities for further research and development in this field. This review aims to provide a comprehensive overview of the different approaches to achieving dendrite-free lithium metal anodes, and to guide future research toward the development of safer and more efficient lithium metal anodes.

Keywords

References

  1. M. Li, J. Lu, Z. Chen, and K. Amine, 30 Years of lithium-ion batteries, Adv. Mater., 30, 1800561 (2018).
  2. J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res., 46, 1053-1061 (2013). https://doi.org/10.1021/ar2002705
  3. L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv, Y.-B. He, Q.-H. Yang, and F. Kang, Revisiting the roles of natural graphite in ongoing lithium-ion batteries, Adv. Mater., 34, 2106704 (2022).
  4. R. Wang, W. Cui, F. Chu, and F. Wu, Lithium metal anodes: Present and future, J. Energy Chem., 48, 145-159
  5. D. Lin, Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194-206 (2017). https://doi.org/10.1038/nnano.2017.16
  6. J. S. Dunning, W. H. Tiedemann, L. Hsueh, and D. N. Bennion, A secondary, nonaqueous solvent battery, J. Electrochem. Soc., 118, 1886 (1971).
  7. L. Kong, Y. Li, and W. Feng, Strategies to solve lithium battery thermal runaway: From mechanism to modification, Electrochem. Energy Rev., 4, 633-679 (2021). https://doi.org/10.1007/s41918-021-00109-3
  8. R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, and Q. Zhang, Artificial interphases for highly stable lithium metal anode, Matter, 1, 317-344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
  9. H. Liu, X.-B. Cheng, R. Xu, X.-Q. Zhang, C. Yan, J.-Q. Huang, and Q. Zhang, Plating/stripping behavior of actual lithium metal anode, Adv. Energy Mater., 9, 1902254 (2019).
  10. Y.-X. Zhan, P. Shi, X.-X. Ma, C.-B. Jin, Q.-K. Zhang, S.-J. Yang, B.-Q. Li, X.-Q. Zhang, and J.-Q. Huang, Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions, Adv. Energy Mater., 12, 2103291 (2022).
  11. X.-R. Chen, X. Chen, C. Yan, X.-Q. Zhang, Q. Zhang, and J.-Q. Huang, Role of lithiophilic metal sites in lithium metal anodes, Energy Fuels, 35, 12746-12752 (2021). https://doi.org/10.1021/acs.energyfuels.1c01602
  12. J. Li, P. Zou, S. W. Chiang, W. Yao, Y. Wang, P. Liu, C. Liang, F. Kang, and C. Yang, A conductive-dielectric gradient framework for stable lithium metal anode, Energy Storage Mater., 24, 700- 706
  13. H. Zhang, X. Liao, Y. Guan, Y. Xiang, M. Li, W. Zhang, X. Zhu, H. Ming, L. Lu, J. Qiu, Y. Huang, G. Cao, Y. Yang, L. Mai, Y. Zhao, and H. Zhang, Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode, Nat. Commun., 9, 3729 (2018).
  14. L. Tan, C. Wei, Y. Zhang, Y. An, S. Xiong, and J. Feng, LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries, Chem. Eng. J., 442, 136243 (2022).
  15. H. Zhou, S. Yu, H. Liu, and P. Liu, Protective coatings for lithium metal anodes: Recent progress and future perspectives, J. Power Sources, 450, 227632
  16. R. Li, Y. Fan, C. Zhao, A. Hu, B. Zhou, M. He, J. Chen, Z. Yan, Y. Pan, and J. Long, Air-stable protective layers for lithium anode achieving safe lithium metal batteries, Small Methods, 7, 2201177 (2023).
  17. X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou, W. Tang, and J. B. Goodenough, Thermodynamic understanding of Li-dendrite formation, Joule, 4, 1864-1879
  18. W. Zhang, H. L. Zhuang, L. Fan, L. Gao, and Y. Lu, A "cationanion regulation" synergistic anode host for dendrite-free lithium metal batteries, Sci. Adv., 4, eaar4410.
  19. M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114 (2016).
  20. P. Albertus, S. Babinec, S. Litzelman, and A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16-21 (2018).
  21. S. Menkin, J. B. Fritzke, R. Larner, C. de Leeuw, Y. Choi, A. B. Gunnarsdottir, and C. P. Grey, Insights into soft short circuit-based degradation of lithium metal batteries, Faraday Discuss., https://doi.org/10.1039/D3FD00101F.
  22. T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux, J. Yang, C. Wang, D. Shanmukaraj, B. Sun, M. Armand, Y. Cui, and G. Wang, Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries, Nat. Commun., 11, 5429
  23. Y. S. Cohen, Y. Cohen, and D. Aurbach, Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy, J. Phys. Chem. B, 104, 12282- 12291 (2000). https://doi.org/10.1021/jp002526b
  24. X.-R. Chen, B.-C. Zhao, C. Yan, and Q. Zhang, Review on Li deposition in working batteries: From nucleation to early growth, Adv. Mater., 33, 2004128 (2021).
  25. Z. Yang, Y. Dang, P. Zhai, Y. Wei, Q. Chen, J. Zuo, X. Gu, Y. Yao, X. Wang, F. Zhao, J. Wang, S. Yang, P. Tang, and Y. Gong, Single-atom reversible lithiophilic sites toward stable lithium anodes, Adv. Energy Mater., 12, 2103368 (2022).
  26. T.-S. Wang, X. Liu, X. Zhao, P. He, C.-W. Nan, and L.-Z. Fan, Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries, Adv. Funct. Mater., 30, 2000786
  27. K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010 (2016).
  28. J. B. Park, C. Choi, S. Yu, K. Y. Chung, and D.-W. Kim, Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate, Adv. Energy Mater., 11, 2101544 (2021).
  29. D. W. Kang, S. S. Park, H. J. Choi, J.-H. Park, J. H. Lee, S.-M. Lee, J.-H. Choi, J. Moon, and B. G. Kim, One-dimensional porous Li-confinable hosts for high-rate and stable Li-metal batteries, ACS Nano, 16, 11892-11901 (2022). https://doi.org/10.1021/acsnano.2c01309
  30. M. Kim, S. Lee, D. Park, H. Kang, D. Kam, J.-H. Park, S. H. Oh, H.-G. Jung, and W. Choi, Tuning lithiophilic sites of Ag-embedded N-doped carbon hollow spheres via intentional blocking strategy for ultrastable Li metal anode in rechargeable batteries, ACS Sustain. Chem. Eng., 11, 1785-1796 (2023). https://doi.org/10.1021/acssuschemeng.2c05918
  31. S.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang, J. Wang, C. Wang, Y. Yu, and Y. Deng, Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition, Nano Lett., 20, 2724-2732
  32. T. Chen, S. Jianjian, J. Xing, Y. Liu, Z. Wang, J. Xiao, H. Liu, Y. Chen, X. Sun, and J. Li, Self-formed lithiophilic alloy buffer layer on copper foam framework for advanced lithium metal anodes, ACS Appl. Energy Mater., 4, 4879-4886 (2021). https://doi.org/10.1021/acsaem.1c00477
  33. G. Lee, J. Ha, J. Lee, Y.-T. Kim, and J. Choi, Ultrathin electrochemical layer tailoring of lithiophilic materials with 3D hierarchical configuration for lithium metal batteries: Sn/Cu6Sn5@ Cu2+1O nanowires on Cu foam, J. Mater. Chem. A, 11, 6144-6156 (2023). https://doi.org/10.1039/D2TA08626C
  34. C. Zhang, W. Lv, G. Zhou, Z. Huang, Y. Zhang, R. Lyu, H. Wu, Q. Yun, F. Kang, and Q.-H. Yang, Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries, Adv. Energy Mater., 8, 1703404 (2018).
  35. W. Hu, Y. Yao, X. Huang, S. Ju, Z. Chen, M. Li, and Y. Wu, CuO nanofilm-covered Cu microcone coating for a long cycle Li metal anode by in situ formed Li2O, ACS Appl. Energy Mater., 5, 3773-3782 (2022). https://doi.org/10.1021/acsaem.2c00218
  36. B. Yu, T. Tao, S. Mateti, S. Lu, and Y. Chen, Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithiummetal batteries, Adv. Funct. Mater., 28, 1803023 (2018).
  37. X. Qian, D. Miao, X. Lin, M. Chen, Y. Xie, J. Qu, X. Tu, and C. Lai, Highly stable and scalable lithium metal anodes enabled by a lithiophilic SnO2@graphite fiber framework design, Batteries Supercaps, 5, e202200161 (2022).
  38. Z. Wang, H. Shi, S. Yang, Z. Cai, H. Lu, L. Jia, M. Hu, H. He, and K. Zhou, Oxygen vacancy-enriched Co3O4 as lithiophilic medium for ultra-stable anode of lithium metal batteries, J. Alloys Compd., 888, 161553 (2021).
  39. B. Zhang, B. Jia, C. Yan, Y. Li, S. Wei, K. Wang, Y. Zhang, Y. Song, G. Wang, L. Li, G. Li, and J. Liang, Breaking the structural anisotropy of ZnO enables dendrite-free lithium-metal anode with ultra-long cycling lifespan, Cell Rep. Phys. Sci., 3, 101164 (2022).
  40. J. A. Syed, J. Ma, B. Zhu, S. Tang, and X. Meng, Hierarchical multicomponent electrode with interlaced Ni(OH)2 nanoflakes wrapped zinc cobalt sulfide nanotube arrays for sustainable highperformance supercapacitors, Adv. Energy Mater., 7, 1701228 (2017).
  41. K. Sasidharachari, K. Y. Cho, and S. Yoon, Mesoporous ZnMn2O4 nanospheres as a nonprecious bifunctional catalyst for Zn-air batteries, ACS Appl. Energy Mater., 3, 3293-3301
  42. Y. Yang, J. Cao, W. Li, Q. Zhang, Y. Xie, Y. Lai, S. Cheng, B. Qu, D.-L. Peng, and X. Wang, Ultrahigh-capacity and dendrite-free lithium metal anodes enabled by lithiophilic bimetallic oxides, J. Mater. Chem. A, 10, 23896-23904 (2022). https://doi.org/10.1039/D2TA06841A
  43. C. Chen, J. Guan, N. W. Li, Y. Lu, D. Luan, C. H. Zhang, G. Cheng, L. Yu, and X. W. Lou, Lotus-root-like carbon fibers embedded with Ni-Co nanoparticles for dendrite-free lithium metal anodes, Adv. Mater., 33, 2100608 (2021).
  44. Y. Zhu, X. He, and Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7, 23685-23693 (2015). https://doi.org/10.1021/acsami.5b07517
  45. K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Adv. Energy Mater., 11, 2002689 (2021).
  46. M. Lei, J.-G. Wang, L. Ren, D. Nan, C. Shen, K. Xie, and X. Liu, Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 30992-30998 (2019). https://doi.org/10.1021/acsami.9b09975
  47. C. Fu, W. Xu, C. Tao, L. Wang, and T. Liu, Lithiophilic nickel phosphide modifying carbon nanofibers for a highly reversible lithium-metal anode, ACS Appl. Energy Mater., 5, 4733-4742 (2022). https://doi.org/10.1021/acsaem.2c00148
  48. J. Cao, Y. Xie, Y. Yang, X. Wang, W. Li, Q. Zhang, S. Ma, S. Cheng, and B. Lu, Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI, Adv. Sci., 9, 2104689 (2022).
  49. G. Huang, S. Chen, P. Guo, R. Tao, K. Jie, B. Liu, X. Zhang, J. Liang, and Y.-C. Cao, In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy, Chem. Eng. J., 395, 125122 (2020).
  50. H. Shen, F. Qi, H. Li, P. Tang, X. Gao, S. Yang, Z. Hu, Z. Li, J. Tan, S. Bai, and F. Li, Ultrafast electrochemical growth of lithiophilic nano-flake arrays for stable lithium metal anode, Adv. Funct. Mater., 31, 2103309 (2021).
  51. F. Liu, L. Wang, Z. Zhang, P. Shi, Y. Feng, Y. Yao, S. Ye, H. Wang, X. Wu, and Y. Yu, A mixed lithium-ion conductive Li2S/ Li2Se protection layer for stable lithium metal anode, Adv. Funct. Mater., 30, 2001607
  52. Z. Zhu, B. Liu, Y. Qian, Y. Fang, X. Lei, X. Liu, J. Zhou, Y. Qian, and G. Wang, Spatially distributed lithiophilic gradient in low-tortuosity 3D hosts via capillary action for high-performance Li metal anodes, Adv. Energy Mater., 13, 2203687 (2023).
  53. Y. Zhao, L. Wang, J. Zou, Q. Ran, L. Li, P. Chen, H. Yu, J. Gao, and X. Niu, Bottom-up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode, J. Energy Chem., 65, 666-673 (2022). https://doi.org/10.1016/j.jechem.2021.06.027
  54. Y. Liu, C. Sun, Y. Lu, X. Lin, M. Chen, Y. Xie, C. Lai, and W. Yan, Lamellar-structured anodes based on lithiophilic gradient enable dendrite-free lithium metal batteries with high capacity loading and fast-charging capability, Chem. Eng. J., 451, 138570 (2023).
  55. S. Niu, S.-W. Zhang, D. Li, X. Wang, X. Chen, R. Shi, N. Shen, M. Jin, X. Zhang, Q. Lian, R. Huang, A. Amini, Y. Zhao, and C. Cheng, Sandwiched Li plating between Lithiophilic-Lithiophobic gradient Silver@Fullerene interphase layer for ultrastable lithium metal anodes, Chem. Eng. J., 429, 132156 (2022).
  56. S.-H. Hong, D.-H. Jung, J.-H. Kim, Y.-H. Lee, S.-J. Cho, S. H. Joo, H.-W. Lee, K.-S. Lee, and S.-Y. Lee, Electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries, Adv. Funct. Mater., 30, 1908868
  57. S. Zhou, C. Fu, Z. Chang, Y. Zhang, D. Xu, Q. He, S. Chai, X. Meng, M. Feng, Y. Zhang, J. Lin, and A. Pan, Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries, Energy Storage Mater., 47, 482-490 (2022). https://doi.org/10.1016/j.ensm.2022.02.033
  58. H.-J. Noh, M.-H. Lee, B. G. Kim, J.-H. Park, S.-M. Lee, and J.-H. Choi, 3D carbon-based porous anode with a pore-size gradient for high-performance lithium metal batteries, ACS Appl. Mater. Interfaces, 13, 55227-55234 (2021). https://doi.org/10.1021/acsami.1c17616
  59. Z. Yu, Y. Cui, and Z. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes, Cell Rep. Phys. Sci., 1, 100119
  60. H. Wu, H. Jia, C. Wang, J.-G. Zhang, and W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes, Adv. Energy Mater., 11, 2003092 (2021).
  61. W. Xu, X. Liao, W. Xu, C. Sun, K. Zhao, Y. Zhao, and C. Hu, Gradient SEI layer induced by liquid alloy electrolyte additive for high rate lithium metal battery, Nano Energy, 88, 106237 (2021).
  62. J.-F. Ding, R. Xu, C. Yan, B.-Q. Li, H. Yuan, and J.-Q. Huang, A review on the failure and regulation of solid electrolyte interphase in lithium batteries, J. Energy Chem., 59, 306-319 (2021). https://doi.org/10.1016/j.jechem.2020.11.016
  63. N. Takenaka, A. Bouibes, Y. Yamada, M. Nagaoka, and A. Yamada, Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism, Adv. Mater., 33, 2100574 (2021).
  64. H. M. Bintang, S. Lee, S. Shin, B. G. Kim, H.-G. Jung, D. Whang, and H.-D. Lim, Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries, Chem. Eng. J., 424, 130524 (2021).
  65. B. Han, Z. Zhang, Y. Zou, K. Xu, G. Xu, H. Wang, H. Meng, Y. Deng, J. Li, and M. Gu, Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy, Adv. Mater., 33, 2100404 (2021).
  66. M. Ma, L. Cao, H. Qi, K. Yao, J. Huang, Z. Xu, S. Chen, and J. Li, An embedded heterostructure Fe2O3@α-FeOOH/RGO with optimized SEI film and fast Li-ion diffusion, J. Alloys Compd., 808, 151657 (2019).
  67. C. Monroe and J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396 (2005).
  68. Y. Fan, X. He, H. Li, Y. Huang, C. Sun, H. Liu, E. Huangzhang, F. Sun, X. Zhao, and J. Nan, Lithiophilic Ni3S2 layer decorated nickel foam (Ni3S2@Ni foam) with fast ion transfer kinetics for long-life lithium metal anodes, Chem. Eng. J., 450, 138384 (2022).
  69. Y. Zhong, Y. Chen, Y. Cheng, Q. Fan, H. Zhao, H. Shao, Y. Lai, Z. Shi, X. Ke, and Z. Guo, Li alginate-based artificial SEI layer for stable lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 37726-37731 (2019). https://doi.org/10.1021/acsami.9b12634
  70. T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch, A. Michaelis, V. Teltevskij, D. Mikhailova, S. Oswald, M. Klose, G. Stephani, R. Hauser, J. Eckert, and L. Giebeler, Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes, Energy Storage Mater., 6, 26-35 (2017). https://doi.org/10.1016/j.ensm.2016.08.002
  71. A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, and B. L. Lucht, Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation, Chem. Mater., 28, 8149-8159 (2016). https://doi.org/10.1021/acs.chemmater.6b02282
  72. S. Zhang, G. Yang, X. Li, Y. Li, Z. Wang, and L. Chen, Electrolyte and current collector designs for stable lithium metal anodes, Int. J. Miner. Metall. Mater., 29, 953-964 (2022). https://doi.org/10.1007/s12613-022-2442-3
  73. W. Fang, Z. Wen, L. Chen, Z. Qin, J. Li, Z. Zheng, Z. Weng, G. Wu, N. Zhang, X. Liu, X. Yuan, and G. Chen, Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes, Nano Energy, 104, 107881 (2022).
  74. Q. Zhao, N. W. Utomo, A. L. Kocen, S. Jin, Y. Deng, V. X. Zhu, S. Moganty, G. W. Coates, and L. A. Archer, Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries, Angew. Chem. Int. Ed., 61, e202116214 (2022).
  75. X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, and X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, J. Power Sources, 196, 9839-9843 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.027
  76. Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, and Y. Cui, Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nat. Commun., 9, 3656 (2018).
  77. M. Yang, S. Li, G. Zhang, M. Huang, J. Duan, Y. Cui, B. Yue, and H. Liu, LiNO3-assisted succinonitrile-based solid-state electrolyte for long cycle life toward a Li-metal anode via an in situ thermal polymerization method, ACS Appl. Mater. Interfaces, 15, 18323-18332 (2023). https://doi.org/10.1021/acsami.3c01134
  78. H. Yang, Q. Liu, Y. Wang, Z. Ma, P. Tang, X. Zhang, H.-M. Cheng, Z. Sun, and F. Li, An interlayer containing dissociated LiNO3 with fast release speed for stable lithium metal batteries with 400 Wh kg-1 energy density, Small, 18, 2202349 (2022).
  79. C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang, J.-Q. Huang, and Q. Zhang, Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries, Angew. Chem. Int. Ed., 57, 14055-14059 (2018). https://doi.org/10.1002/anie.201807034
  80. M. Ue and K. Uosaki, Recent progress in liquid electrolytes for lithium metal batteries, Curr. Opin. Electrochem., 17, 106-113 (2019). https://doi.org/10.1016/j.coelec.2019.05.001
  81. X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao, S. Li, Q. Liu, J. Wu, Y. Fu, C. Han, F. Kang, and B. Li, Hybrid Electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries, Adv. Mater., 33, 2007945 (2021).
  82. K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503-11618 (2014). https://doi.org/10.1021/cr500003w
  83. S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu, and C. Wang, An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes, Angew. Chem. Int. Ed., 60, 3661-3671 (2021). https://doi.org/10.1002/anie.202012005
  84. D. Liu, X. Xiong, Q. Liang, X. Wu, and H. Fu, An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte, Chem. Commun., 57, 9232-9235 (2021). https://doi.org/10.1039/D1CC03676A
  85. S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, and Y. Lu, Synergistic dual-additive electrolyte enables practical lithium-metal batteries, Angew. Chem. Int. Ed., 59, 14935- 14941
  86. N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, J. Jiang, K. Xu, M. A. Schroeder, X. He, and C. Wang, Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes, ACS Energy Lett., 6, 1839-1848 (2021). https://doi.org/10.1021/acsenergylett.1c00365
  87. S. Liu, J. Xia, W. Zhang, H. Wan, J. Zhang, J. Xu, J. Rao, T. Deng, S. Hou, B. Nan, and C. Wang, Salt-in-salt reinforced carbonate electrolyte for Li metal batteries, Angew. Chem. Int. Ed., 61, e202210522 (2022).
  88. W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, and Y. Lu, Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries, Adv. Mater., 32, 2001740
  89. L. Fu, X. Wang, L. Wang, M. Wan, Y. Li, Z. Cai, Y. Tan, G. Li, R. Zhan, Z. W. Seh, and Y. Sun, A salt-in-metal anode: Stabilizing the solid electrolyte interphase to enable prolonged battery cycling, Adv. Funct. Mater., 31, 2010602 (2021).
  90. J.-T. Kim, I. Phiri, and S.-Y. Ryou, Incorporation of embedded protective layers to circumvent the low LiNO3 solubility problem and enhance Li metal anode cycling performance, ACS Appl. Energy Mater., 6, 2311-2319 (2023). https://doi.org/10.1021/acsaem.2c03511
  91. L. Chen, A. Lv, F. Guo, M. Wang, and S. Jiao, Solid-liquid coexisting LiNO3 electrolyte for extremely stable lithium metal anodes on a bare Cu foil, ACS Sustain. Chem. Eng., 8, 706-713
  92. Z. Xie, Z. Wu, X. An, X. Yue, A. Yoshida, X. Du, X. Hao, A. Abudula, and G. Guan, 2-fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability, Chem. Eng. J., 393, 124789
  93. X. Li, J. Liu, J. He, H. Wang, S. Qi, D. Wu, J. Huang, F. Li, W. Hu, and J. Ma, Hexafluoroisopropyl trifluoromethanesulfonatedriven easily Li+ desolvated electrolyte to afford LiIINCM811 cells with efficient anode/cathode electrolyte interphases, Adv. Funct. Mater., 31, 2104395 (2021).
  94. Y. Ma, Z. Zhou, C. Li, L. Wang, Y. Wang, X. Cheng, P. Zuo, C. Du, H. Huo, Y. Gao, and G. Yin, Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive, Energy Storage Mater., 11, 197-204 (2018). https://doi.org/10.1016/j.ensm.2017.10.015
  95. H. Sun, J. Liu, J. He, H. Wang, G. Jiang, S. Qi, and J. Ma, Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive, Sci. Bull., 67, 725-732 (2022). https://doi.org/10.1016/j.scib.2022.01.012
  96. X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, and Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989 (2017).
  97. W. Hou, S. Li, J. Liang, B. Yuan, and R. Hu, Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasma treatment for highly stable Li metal anode, Electrochim. Acta, 402, 139561 (2022).
  98. Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, and C. Wu, Regulating Li deposition by constructing LiF-rich host for dendritefree lithium metal anode, Energy Storage Mater., 16, 411-418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022
  99. G. Wan, F. Guo, H. Li, Y. Cao, X. Ai, J. Qian, Y. Li, and H. Yang, Suppression of dendritic lithium growth by in situ formation of a chemically stable and mechanically strong solid electrolyte interphase, ACS Appl. Mater. Interfaces, 10, 593-601 (2018). https://doi.org/10.1021/acsami.7b14662
  100. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, and C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv., 4, eaau9245.
  101. S. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herbert, N. J. Dudney, J. B. Wolfenstine, J. Sakamoto, and D. J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 28, 197-206 (2016). https://doi.org/10.1021/acs.chemmater.5b03854
  102. J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, and Y. Cui, Surface fluorination of reactive battery anode materials for enhanced stability, J. Am. Chem. Soc., 139, 11550-11558 (2017). https://doi.org/10.1021/jacs.7b05251
  103. J. Lang, Y. Long, J. Qu, X. Luo, H. Wei, K. Huang, H. Zhang, L. Qi, Q. Zhang, Z. Li, and H. Wu, One-pot solution coating of high quality LiF layer to stabilize Li metal anode, Energy Storage Mater., 16, 85-90 (2019). https://doi.org/10.1016/j.ensm.2018.04.024
  104. A. C. Kozen, C.-F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S.-B. Lee, G. W. Rubloff, and M. Noked, Next-generation lithium metal anode engineering via atomic layer deposition, ACS Nano, 9, 5884-5892 (2015). https://doi.org/10.1021/acsnano.5b02166
  105. L. Wang, L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li, and H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating, Energy Storage Mater., 10, 16-23 (2018). https://doi.org/10.1016/j.ensm.2017.08.001
  106. N.-W. Li, Y.-X. Yin, C.-P. Yang, and Y.-G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853-1858 (2016). https://doi.org/10.1002/adma.201504526
  107. S. Mo, B. Zhang, K. Zhang, S. Li, and F. Pan, LiAl5O8 as a potential coating material in lithium-ion batteries: A first principles study, Phys. Chem. Chem. Phys., 21, 13758-13765 (2019). https://doi.org/10.1039/C9CP02650A
  108. S. Li, T. Zhao, K. Wang, C. Sun, W. Jia, M. Zhang, H. Wang, A. Shao, and Y. Ma, Unveiling the stress-buffering mechanism of deep lithiated Ag nanowires: A polymer segmental motion strategy toward ultra-robust Li metal anodes, Adv. Funct. Mater., 32, 2203010 (2022).
  109. R. Wang, J. Yu, J. Tang, R. Meng, L. F. Nazar, L. Huang, and X. Liang, Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode, Energy Storage Mater., 32, 178-184
  110. U. Eduok, O. Faye, and J. Szpunar, Recent developments and applications of protective silicone coatings: A review of PDMS functional materials, Prog. Org. Coat., 111, 124-163 (2017). https://doi.org/10.1016/j.porgcoat.2017.05.012
  111. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29, 1603755 (2017).
  112. P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci., 39, 683-706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
  113. R. Gregorio Jr, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, J. Appl. Polym. Sci., 100, 3272-3279 (2006). https://doi.org/10.1002/app.23137
  114. J. Luo, C.-C. Fang, and N.-L. Wu, High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes, Adv. Energy Mater., 8, 1701482 (2018).
  115. O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon, T.-h. Hwang, Y.-S. Kang, J. Park, N. Meethong, and K. Kang, High-dielectric polymer coating for uniform lithium deposition in anodefree lithium batteries, ACS Energy Lett., 6, 4416-4425 (2021). https://doi.org/10.1021/acsenergylett.1c02224
  116. J. Lopez, A. Pei, J. Y. Oh, G.-J. N. Wang, Y. Cui, and Z. Bao, Effects of polymer coatings on electrodeposited lithium metal, J. Am. Chem. Soc., 140, 11735-11744 (2018). https://doi.org/10.1021/jacs.8b06047
  117. M. R. Shaik, M. Bissannagari, Y. M. Kwon, K. Y. Cho, J. Kim, and S. Yoon, Soft, robust, Li-ion friendly halloysite-based hybrid protective layer for dendrite-free Li metal anode, Chem. Eng. J., 424, 130326 (2021).
  118. R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, and J.-Q. Huang, Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater., 28, 1705838 (2018).
  119. X. Xiong, R. Zhi, Q. Zhou, W. Yan, Y. Zhu, Y. Chen, L. Fu, N. Yu, and Y. Wu, A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries, Mater. Adv., 2, 4240-4245 (2021). https://doi.org/10.1039/D1MA00121C
  120. E. K. Jang, J. Ahn, S. Yoon, and K. Y. Cho, High dielectric, robust composite protective layer for dendrite-free and LiPF6 degradation-free lithium metal anode, Adv. Funct. Mater., 29, 1905078 (2019).
  121. S. Guo, L. Wang, Y. Jin, N. Piao, Z. Chen, G. Tian, J. Li, C. Zhao, and X. He, A polymeric composite protective layer for stable Li metal anodes, Nano Converg., 7, 21
  122. Y. Hu, Z. Li, Z. Wang, X. Wang, W. Chen, J. Wang, W. Zhong, and R. Ma, Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode, Adv. Sci., 10, 2206995 (2023).
  123. L. Tan, Q. Chen, P. Chen, X. Huang, L. Li, K. Zou, and D. Liu, Lithium chloride protective layer for stable lithium metal anode via a facile surface chemistry, J. Electroanal. Chem., 928, 117063 (2023).
  124. Y. Ye, Y. Liu, J. Wu, and Y. Yang, Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode, J. Power Sources, 472, 228520 (2020).