References
- M. Li, J. Lu, Z. Chen, and K. Amine, 30 Years of lithium-ion batteries, Adv. Mater., 30, 1800561 (2018).
- J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res., 46, 1053-1061 (2013). https://doi.org/10.1021/ar2002705
- L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv, Y.-B. He, Q.-H. Yang, and F. Kang, Revisiting the roles of natural graphite in ongoing lithium-ion batteries, Adv. Mater., 34, 2106704 (2022).
- R. Wang, W. Cui, F. Chu, and F. Wu, Lithium metal anodes: Present and future, J. Energy Chem., 48, 145-159
- D. Lin, Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194-206 (2017). https://doi.org/10.1038/nnano.2017.16
- J. S. Dunning, W. H. Tiedemann, L. Hsueh, and D. N. Bennion, A secondary, nonaqueous solvent battery, J. Electrochem. Soc., 118, 1886 (1971).
- L. Kong, Y. Li, and W. Feng, Strategies to solve lithium battery thermal runaway: From mechanism to modification, Electrochem. Energy Rev., 4, 633-679 (2021). https://doi.org/10.1007/s41918-021-00109-3
- R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, and Q. Zhang, Artificial interphases for highly stable lithium metal anode, Matter, 1, 317-344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
- H. Liu, X.-B. Cheng, R. Xu, X.-Q. Zhang, C. Yan, J.-Q. Huang, and Q. Zhang, Plating/stripping behavior of actual lithium metal anode, Adv. Energy Mater., 9, 1902254 (2019).
- Y.-X. Zhan, P. Shi, X.-X. Ma, C.-B. Jin, Q.-K. Zhang, S.-J. Yang, B.-Q. Li, X.-Q. Zhang, and J.-Q. Huang, Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions, Adv. Energy Mater., 12, 2103291 (2022).
- X.-R. Chen, X. Chen, C. Yan, X.-Q. Zhang, Q. Zhang, and J.-Q. Huang, Role of lithiophilic metal sites in lithium metal anodes, Energy Fuels, 35, 12746-12752 (2021). https://doi.org/10.1021/acs.energyfuels.1c01602
- J. Li, P. Zou, S. W. Chiang, W. Yao, Y. Wang, P. Liu, C. Liang, F. Kang, and C. Yang, A conductive-dielectric gradient framework for stable lithium metal anode, Energy Storage Mater., 24, 700- 706
- H. Zhang, X. Liao, Y. Guan, Y. Xiang, M. Li, W. Zhang, X. Zhu, H. Ming, L. Lu, J. Qiu, Y. Huang, G. Cao, Y. Yang, L. Mai, Y. Zhao, and H. Zhang, Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode, Nat. Commun., 9, 3729 (2018).
- L. Tan, C. Wei, Y. Zhang, Y. An, S. Xiong, and J. Feng, LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries, Chem. Eng. J., 442, 136243 (2022).
- H. Zhou, S. Yu, H. Liu, and P. Liu, Protective coatings for lithium metal anodes: Recent progress and future perspectives, J. Power Sources, 450, 227632
- R. Li, Y. Fan, C. Zhao, A. Hu, B. Zhou, M. He, J. Chen, Z. Yan, Y. Pan, and J. Long, Air-stable protective layers for lithium anode achieving safe lithium metal batteries, Small Methods, 7, 2201177 (2023).
- X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou, W. Tang, and J. B. Goodenough, Thermodynamic understanding of Li-dendrite formation, Joule, 4, 1864-1879
- W. Zhang, H. L. Zhuang, L. Fan, L. Gao, and Y. Lu, A "cationanion regulation" synergistic anode host for dendrite-free lithium metal batteries, Sci. Adv., 4, eaar4410.
- M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114 (2016).
- P. Albertus, S. Babinec, S. Litzelman, and A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16-21 (2018).
- S. Menkin, J. B. Fritzke, R. Larner, C. de Leeuw, Y. Choi, A. B. Gunnarsdottir, and C. P. Grey, Insights into soft short circuit-based degradation of lithium metal batteries, Faraday Discuss., https://doi.org/10.1039/D3FD00101F.
- T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux, J. Yang, C. Wang, D. Shanmukaraj, B. Sun, M. Armand, Y. Cui, and G. Wang, Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries, Nat. Commun., 11, 5429
- Y. S. Cohen, Y. Cohen, and D. Aurbach, Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy, J. Phys. Chem. B, 104, 12282- 12291 (2000). https://doi.org/10.1021/jp002526b
- X.-R. Chen, B.-C. Zhao, C. Yan, and Q. Zhang, Review on Li deposition in working batteries: From nucleation to early growth, Adv. Mater., 33, 2004128 (2021).
- Z. Yang, Y. Dang, P. Zhai, Y. Wei, Q. Chen, J. Zuo, X. Gu, Y. Yao, X. Wang, F. Zhao, J. Wang, S. Yang, P. Tang, and Y. Gong, Single-atom reversible lithiophilic sites toward stable lithium anodes, Adv. Energy Mater., 12, 2103368 (2022).
- T.-S. Wang, X. Liu, X. Zhao, P. He, C.-W. Nan, and L.-Z. Fan, Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries, Adv. Funct. Mater., 30, 2000786
- K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010 (2016).
- J. B. Park, C. Choi, S. Yu, K. Y. Chung, and D.-W. Kim, Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate, Adv. Energy Mater., 11, 2101544 (2021).
- D. W. Kang, S. S. Park, H. J. Choi, J.-H. Park, J. H. Lee, S.-M. Lee, J.-H. Choi, J. Moon, and B. G. Kim, One-dimensional porous Li-confinable hosts for high-rate and stable Li-metal batteries, ACS Nano, 16, 11892-11901 (2022). https://doi.org/10.1021/acsnano.2c01309
- M. Kim, S. Lee, D. Park, H. Kang, D. Kam, J.-H. Park, S. H. Oh, H.-G. Jung, and W. Choi, Tuning lithiophilic sites of Ag-embedded N-doped carbon hollow spheres via intentional blocking strategy for ultrastable Li metal anode in rechargeable batteries, ACS Sustain. Chem. Eng., 11, 1785-1796 (2023). https://doi.org/10.1021/acssuschemeng.2c05918
- S.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang, J. Wang, C. Wang, Y. Yu, and Y. Deng, Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition, Nano Lett., 20, 2724-2732
- T. Chen, S. Jianjian, J. Xing, Y. Liu, Z. Wang, J. Xiao, H. Liu, Y. Chen, X. Sun, and J. Li, Self-formed lithiophilic alloy buffer layer on copper foam framework for advanced lithium metal anodes, ACS Appl. Energy Mater., 4, 4879-4886 (2021). https://doi.org/10.1021/acsaem.1c00477
- G. Lee, J. Ha, J. Lee, Y.-T. Kim, and J. Choi, Ultrathin electrochemical layer tailoring of lithiophilic materials with 3D hierarchical configuration for lithium metal batteries: Sn/Cu6Sn5@ Cu2+1O nanowires on Cu foam, J. Mater. Chem. A, 11, 6144-6156 (2023). https://doi.org/10.1039/D2TA08626C
- C. Zhang, W. Lv, G. Zhou, Z. Huang, Y. Zhang, R. Lyu, H. Wu, Q. Yun, F. Kang, and Q.-H. Yang, Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries, Adv. Energy Mater., 8, 1703404 (2018).
- W. Hu, Y. Yao, X. Huang, S. Ju, Z. Chen, M. Li, and Y. Wu, CuO nanofilm-covered Cu microcone coating for a long cycle Li metal anode by in situ formed Li2O, ACS Appl. Energy Mater., 5, 3773-3782 (2022). https://doi.org/10.1021/acsaem.2c00218
- B. Yu, T. Tao, S. Mateti, S. Lu, and Y. Chen, Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithiummetal batteries, Adv. Funct. Mater., 28, 1803023 (2018).
- X. Qian, D. Miao, X. Lin, M. Chen, Y. Xie, J. Qu, X. Tu, and C. Lai, Highly stable and scalable lithium metal anodes enabled by a lithiophilic SnO2@graphite fiber framework design, Batteries Supercaps, 5, e202200161 (2022).
- Z. Wang, H. Shi, S. Yang, Z. Cai, H. Lu, L. Jia, M. Hu, H. He, and K. Zhou, Oxygen vacancy-enriched Co3O4 as lithiophilic medium for ultra-stable anode of lithium metal batteries, J. Alloys Compd., 888, 161553 (2021).
- B. Zhang, B. Jia, C. Yan, Y. Li, S. Wei, K. Wang, Y. Zhang, Y. Song, G. Wang, L. Li, G. Li, and J. Liang, Breaking the structural anisotropy of ZnO enables dendrite-free lithium-metal anode with ultra-long cycling lifespan, Cell Rep. Phys. Sci., 3, 101164 (2022).
- J. A. Syed, J. Ma, B. Zhu, S. Tang, and X. Meng, Hierarchical multicomponent electrode with interlaced Ni(OH)2 nanoflakes wrapped zinc cobalt sulfide nanotube arrays for sustainable highperformance supercapacitors, Adv. Energy Mater., 7, 1701228 (2017).
- K. Sasidharachari, K. Y. Cho, and S. Yoon, Mesoporous ZnMn2O4 nanospheres as a nonprecious bifunctional catalyst for Zn-air batteries, ACS Appl. Energy Mater., 3, 3293-3301
- Y. Yang, J. Cao, W. Li, Q. Zhang, Y. Xie, Y. Lai, S. Cheng, B. Qu, D.-L. Peng, and X. Wang, Ultrahigh-capacity and dendrite-free lithium metal anodes enabled by lithiophilic bimetallic oxides, J. Mater. Chem. A, 10, 23896-23904 (2022). https://doi.org/10.1039/D2TA06841A
- C. Chen, J. Guan, N. W. Li, Y. Lu, D. Luan, C. H. Zhang, G. Cheng, L. Yu, and X. W. Lou, Lotus-root-like carbon fibers embedded with Ni-Co nanoparticles for dendrite-free lithium metal anodes, Adv. Mater., 33, 2100608 (2021).
- Y. Zhu, X. He, and Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7, 23685-23693 (2015). https://doi.org/10.1021/acsami.5b07517
- K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Adv. Energy Mater., 11, 2002689 (2021).
- M. Lei, J.-G. Wang, L. Ren, D. Nan, C. Shen, K. Xie, and X. Liu, Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 30992-30998 (2019). https://doi.org/10.1021/acsami.9b09975
- C. Fu, W. Xu, C. Tao, L. Wang, and T. Liu, Lithiophilic nickel phosphide modifying carbon nanofibers for a highly reversible lithium-metal anode, ACS Appl. Energy Mater., 5, 4733-4742 (2022). https://doi.org/10.1021/acsaem.2c00148
- J. Cao, Y. Xie, Y. Yang, X. Wang, W. Li, Q. Zhang, S. Ma, S. Cheng, and B. Lu, Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI, Adv. Sci., 9, 2104689 (2022).
- G. Huang, S. Chen, P. Guo, R. Tao, K. Jie, B. Liu, X. Zhang, J. Liang, and Y.-C. Cao, In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy, Chem. Eng. J., 395, 125122 (2020).
- H. Shen, F. Qi, H. Li, P. Tang, X. Gao, S. Yang, Z. Hu, Z. Li, J. Tan, S. Bai, and F. Li, Ultrafast electrochemical growth of lithiophilic nano-flake arrays for stable lithium metal anode, Adv. Funct. Mater., 31, 2103309 (2021).
- F. Liu, L. Wang, Z. Zhang, P. Shi, Y. Feng, Y. Yao, S. Ye, H. Wang, X. Wu, and Y. Yu, A mixed lithium-ion conductive Li2S/ Li2Se protection layer for stable lithium metal anode, Adv. Funct. Mater., 30, 2001607
- Z. Zhu, B. Liu, Y. Qian, Y. Fang, X. Lei, X. Liu, J. Zhou, Y. Qian, and G. Wang, Spatially distributed lithiophilic gradient in low-tortuosity 3D hosts via capillary action for high-performance Li metal anodes, Adv. Energy Mater., 13, 2203687 (2023).
- Y. Zhao, L. Wang, J. Zou, Q. Ran, L. Li, P. Chen, H. Yu, J. Gao, and X. Niu, Bottom-up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode, J. Energy Chem., 65, 666-673 (2022). https://doi.org/10.1016/j.jechem.2021.06.027
- Y. Liu, C. Sun, Y. Lu, X. Lin, M. Chen, Y. Xie, C. Lai, and W. Yan, Lamellar-structured anodes based on lithiophilic gradient enable dendrite-free lithium metal batteries with high capacity loading and fast-charging capability, Chem. Eng. J., 451, 138570 (2023).
- S. Niu, S.-W. Zhang, D. Li, X. Wang, X. Chen, R. Shi, N. Shen, M. Jin, X. Zhang, Q. Lian, R. Huang, A. Amini, Y. Zhao, and C. Cheng, Sandwiched Li plating between Lithiophilic-Lithiophobic gradient Silver@Fullerene interphase layer for ultrastable lithium metal anodes, Chem. Eng. J., 429, 132156 (2022).
- S.-H. Hong, D.-H. Jung, J.-H. Kim, Y.-H. Lee, S.-J. Cho, S. H. Joo, H.-W. Lee, K.-S. Lee, and S.-Y. Lee, Electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries, Adv. Funct. Mater., 30, 1908868
- S. Zhou, C. Fu, Z. Chang, Y. Zhang, D. Xu, Q. He, S. Chai, X. Meng, M. Feng, Y. Zhang, J. Lin, and A. Pan, Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries, Energy Storage Mater., 47, 482-490 (2022). https://doi.org/10.1016/j.ensm.2022.02.033
- H.-J. Noh, M.-H. Lee, B. G. Kim, J.-H. Park, S.-M. Lee, and J.-H. Choi, 3D carbon-based porous anode with a pore-size gradient for high-performance lithium metal batteries, ACS Appl. Mater. Interfaces, 13, 55227-55234 (2021). https://doi.org/10.1021/acsami.1c17616
- Z. Yu, Y. Cui, and Z. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes, Cell Rep. Phys. Sci., 1, 100119
- H. Wu, H. Jia, C. Wang, J.-G. Zhang, and W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes, Adv. Energy Mater., 11, 2003092 (2021).
- W. Xu, X. Liao, W. Xu, C. Sun, K. Zhao, Y. Zhao, and C. Hu, Gradient SEI layer induced by liquid alloy electrolyte additive for high rate lithium metal battery, Nano Energy, 88, 106237 (2021).
- J.-F. Ding, R. Xu, C. Yan, B.-Q. Li, H. Yuan, and J.-Q. Huang, A review on the failure and regulation of solid electrolyte interphase in lithium batteries, J. Energy Chem., 59, 306-319 (2021). https://doi.org/10.1016/j.jechem.2020.11.016
- N. Takenaka, A. Bouibes, Y. Yamada, M. Nagaoka, and A. Yamada, Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism, Adv. Mater., 33, 2100574 (2021).
- H. M. Bintang, S. Lee, S. Shin, B. G. Kim, H.-G. Jung, D. Whang, and H.-D. Lim, Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries, Chem. Eng. J., 424, 130524 (2021).
- B. Han, Z. Zhang, Y. Zou, K. Xu, G. Xu, H. Wang, H. Meng, Y. Deng, J. Li, and M. Gu, Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy, Adv. Mater., 33, 2100404 (2021).
- M. Ma, L. Cao, H. Qi, K. Yao, J. Huang, Z. Xu, S. Chen, and J. Li, An embedded heterostructure Fe2O3@α-FeOOH/RGO with optimized SEI film and fast Li-ion diffusion, J. Alloys Compd., 808, 151657 (2019).
- C. Monroe and J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396 (2005).
- Y. Fan, X. He, H. Li, Y. Huang, C. Sun, H. Liu, E. Huangzhang, F. Sun, X. Zhao, and J. Nan, Lithiophilic Ni3S2 layer decorated nickel foam (Ni3S2@Ni foam) with fast ion transfer kinetics for long-life lithium metal anodes, Chem. Eng. J., 450, 138384 (2022).
- Y. Zhong, Y. Chen, Y. Cheng, Q. Fan, H. Zhao, H. Shao, Y. Lai, Z. Shi, X. Ke, and Z. Guo, Li alginate-based artificial SEI layer for stable lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 37726-37731 (2019). https://doi.org/10.1021/acsami.9b12634
- T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch, A. Michaelis, V. Teltevskij, D. Mikhailova, S. Oswald, M. Klose, G. Stephani, R. Hauser, J. Eckert, and L. Giebeler, Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes, Energy Storage Mater., 6, 26-35 (2017). https://doi.org/10.1016/j.ensm.2016.08.002
- A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, and B. L. Lucht, Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation, Chem. Mater., 28, 8149-8159 (2016). https://doi.org/10.1021/acs.chemmater.6b02282
- S. Zhang, G. Yang, X. Li, Y. Li, Z. Wang, and L. Chen, Electrolyte and current collector designs for stable lithium metal anodes, Int. J. Miner. Metall. Mater., 29, 953-964 (2022). https://doi.org/10.1007/s12613-022-2442-3
- W. Fang, Z. Wen, L. Chen, Z. Qin, J. Li, Z. Zheng, Z. Weng, G. Wu, N. Zhang, X. Liu, X. Yuan, and G. Chen, Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes, Nano Energy, 104, 107881 (2022).
- Q. Zhao, N. W. Utomo, A. L. Kocen, S. Jin, Y. Deng, V. X. Zhu, S. Moganty, G. W. Coates, and L. A. Archer, Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries, Angew. Chem. Int. Ed., 61, e202116214 (2022).
- X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, and X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, J. Power Sources, 196, 9839-9843 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.027
- Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, and Y. Cui, Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nat. Commun., 9, 3656 (2018).
- M. Yang, S. Li, G. Zhang, M. Huang, J. Duan, Y. Cui, B. Yue, and H. Liu, LiNO3-assisted succinonitrile-based solid-state electrolyte for long cycle life toward a Li-metal anode via an in situ thermal polymerization method, ACS Appl. Mater. Interfaces, 15, 18323-18332 (2023). https://doi.org/10.1021/acsami.3c01134
- H. Yang, Q. Liu, Y. Wang, Z. Ma, P. Tang, X. Zhang, H.-M. Cheng, Z. Sun, and F. Li, An interlayer containing dissociated LiNO3 with fast release speed for stable lithium metal batteries with 400 Wh kg-1 energy density, Small, 18, 2202349 (2022).
- C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang, J.-Q. Huang, and Q. Zhang, Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries, Angew. Chem. Int. Ed., 57, 14055-14059 (2018). https://doi.org/10.1002/anie.201807034
- M. Ue and K. Uosaki, Recent progress in liquid electrolytes for lithium metal batteries, Curr. Opin. Electrochem., 17, 106-113 (2019). https://doi.org/10.1016/j.coelec.2019.05.001
- X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao, S. Li, Q. Liu, J. Wu, Y. Fu, C. Han, F. Kang, and B. Li, Hybrid Electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries, Adv. Mater., 33, 2007945 (2021).
- K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503-11618 (2014). https://doi.org/10.1021/cr500003w
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu, and C. Wang, An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes, Angew. Chem. Int. Ed., 60, 3661-3671 (2021). https://doi.org/10.1002/anie.202012005
- D. Liu, X. Xiong, Q. Liang, X. Wu, and H. Fu, An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte, Chem. Commun., 57, 9232-9235 (2021). https://doi.org/10.1039/D1CC03676A
- S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, and Y. Lu, Synergistic dual-additive electrolyte enables practical lithium-metal batteries, Angew. Chem. Int. Ed., 59, 14935- 14941
- N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, J. Jiang, K. Xu, M. A. Schroeder, X. He, and C. Wang, Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes, ACS Energy Lett., 6, 1839-1848 (2021). https://doi.org/10.1021/acsenergylett.1c00365
- S. Liu, J. Xia, W. Zhang, H. Wan, J. Zhang, J. Xu, J. Rao, T. Deng, S. Hou, B. Nan, and C. Wang, Salt-in-salt reinforced carbonate electrolyte for Li metal batteries, Angew. Chem. Int. Ed., 61, e202210522 (2022).
- W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, and Y. Lu, Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries, Adv. Mater., 32, 2001740
- L. Fu, X. Wang, L. Wang, M. Wan, Y. Li, Z. Cai, Y. Tan, G. Li, R. Zhan, Z. W. Seh, and Y. Sun, A salt-in-metal anode: Stabilizing the solid electrolyte interphase to enable prolonged battery cycling, Adv. Funct. Mater., 31, 2010602 (2021).
- J.-T. Kim, I. Phiri, and S.-Y. Ryou, Incorporation of embedded protective layers to circumvent the low LiNO3 solubility problem and enhance Li metal anode cycling performance, ACS Appl. Energy Mater., 6, 2311-2319 (2023). https://doi.org/10.1021/acsaem.2c03511
- L. Chen, A. Lv, F. Guo, M. Wang, and S. Jiao, Solid-liquid coexisting LiNO3 electrolyte for extremely stable lithium metal anodes on a bare Cu foil, ACS Sustain. Chem. Eng., 8, 706-713
- Z. Xie, Z. Wu, X. An, X. Yue, A. Yoshida, X. Du, X. Hao, A. Abudula, and G. Guan, 2-fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability, Chem. Eng. J., 393, 124789
- X. Li, J. Liu, J. He, H. Wang, S. Qi, D. Wu, J. Huang, F. Li, W. Hu, and J. Ma, Hexafluoroisopropyl trifluoromethanesulfonatedriven easily Li+ desolvated electrolyte to afford LiIINCM811 cells with efficient anode/cathode electrolyte interphases, Adv. Funct. Mater., 31, 2104395 (2021).
- Y. Ma, Z. Zhou, C. Li, L. Wang, Y. Wang, X. Cheng, P. Zuo, C. Du, H. Huo, Y. Gao, and G. Yin, Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive, Energy Storage Mater., 11, 197-204 (2018). https://doi.org/10.1016/j.ensm.2017.10.015
- H. Sun, J. Liu, J. He, H. Wang, G. Jiang, S. Qi, and J. Ma, Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive, Sci. Bull., 67, 725-732 (2022). https://doi.org/10.1016/j.scib.2022.01.012
- X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, and Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989 (2017).
- W. Hou, S. Li, J. Liang, B. Yuan, and R. Hu, Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasma treatment for highly stable Li metal anode, Electrochim. Acta, 402, 139561 (2022).
- Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, and C. Wu, Regulating Li deposition by constructing LiF-rich host for dendritefree lithium metal anode, Energy Storage Mater., 16, 411-418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022
- G. Wan, F. Guo, H. Li, Y. Cao, X. Ai, J. Qian, Y. Li, and H. Yang, Suppression of dendritic lithium growth by in situ formation of a chemically stable and mechanically strong solid electrolyte interphase, ACS Appl. Mater. Interfaces, 10, 593-601 (2018). https://doi.org/10.1021/acsami.7b14662
- X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, and C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv., 4, eaau9245.
- S. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herbert, N. J. Dudney, J. B. Wolfenstine, J. Sakamoto, and D. J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 28, 197-206 (2016). https://doi.org/10.1021/acs.chemmater.5b03854
- J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, and Y. Cui, Surface fluorination of reactive battery anode materials for enhanced stability, J. Am. Chem. Soc., 139, 11550-11558 (2017). https://doi.org/10.1021/jacs.7b05251
- J. Lang, Y. Long, J. Qu, X. Luo, H. Wei, K. Huang, H. Zhang, L. Qi, Q. Zhang, Z. Li, and H. Wu, One-pot solution coating of high quality LiF layer to stabilize Li metal anode, Energy Storage Mater., 16, 85-90 (2019). https://doi.org/10.1016/j.ensm.2018.04.024
- A. C. Kozen, C.-F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S.-B. Lee, G. W. Rubloff, and M. Noked, Next-generation lithium metal anode engineering via atomic layer deposition, ACS Nano, 9, 5884-5892 (2015). https://doi.org/10.1021/acsnano.5b02166
- L. Wang, L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li, and H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating, Energy Storage Mater., 10, 16-23 (2018). https://doi.org/10.1016/j.ensm.2017.08.001
- N.-W. Li, Y.-X. Yin, C.-P. Yang, and Y.-G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853-1858 (2016). https://doi.org/10.1002/adma.201504526
- S. Mo, B. Zhang, K. Zhang, S. Li, and F. Pan, LiAl5O8 as a potential coating material in lithium-ion batteries: A first principles study, Phys. Chem. Chem. Phys., 21, 13758-13765 (2019). https://doi.org/10.1039/C9CP02650A
- S. Li, T. Zhao, K. Wang, C. Sun, W. Jia, M. Zhang, H. Wang, A. Shao, and Y. Ma, Unveiling the stress-buffering mechanism of deep lithiated Ag nanowires: A polymer segmental motion strategy toward ultra-robust Li metal anodes, Adv. Funct. Mater., 32, 2203010 (2022).
- R. Wang, J. Yu, J. Tang, R. Meng, L. F. Nazar, L. Huang, and X. Liang, Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode, Energy Storage Mater., 32, 178-184
- U. Eduok, O. Faye, and J. Szpunar, Recent developments and applications of protective silicone coatings: A review of PDMS functional materials, Prog. Org. Coat., 111, 124-163 (2017). https://doi.org/10.1016/j.porgcoat.2017.05.012
- B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29, 1603755 (2017).
- P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci., 39, 683-706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
- R. Gregorio Jr, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, J. Appl. Polym. Sci., 100, 3272-3279 (2006). https://doi.org/10.1002/app.23137
- J. Luo, C.-C. Fang, and N.-L. Wu, High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes, Adv. Energy Mater., 8, 1701482 (2018).
- O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon, T.-h. Hwang, Y.-S. Kang, J. Park, N. Meethong, and K. Kang, High-dielectric polymer coating for uniform lithium deposition in anodefree lithium batteries, ACS Energy Lett., 6, 4416-4425 (2021). https://doi.org/10.1021/acsenergylett.1c02224
- J. Lopez, A. Pei, J. Y. Oh, G.-J. N. Wang, Y. Cui, and Z. Bao, Effects of polymer coatings on electrodeposited lithium metal, J. Am. Chem. Soc., 140, 11735-11744 (2018). https://doi.org/10.1021/jacs.8b06047
- M. R. Shaik, M. Bissannagari, Y. M. Kwon, K. Y. Cho, J. Kim, and S. Yoon, Soft, robust, Li-ion friendly halloysite-based hybrid protective layer for dendrite-free Li metal anode, Chem. Eng. J., 424, 130326 (2021).
- R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, and J.-Q. Huang, Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater., 28, 1705838 (2018).
- X. Xiong, R. Zhi, Q. Zhou, W. Yan, Y. Zhu, Y. Chen, L. Fu, N. Yu, and Y. Wu, A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries, Mater. Adv., 2, 4240-4245 (2021). https://doi.org/10.1039/D1MA00121C
- E. K. Jang, J. Ahn, S. Yoon, and K. Y. Cho, High dielectric, robust composite protective layer for dendrite-free and LiPF6 degradation-free lithium metal anode, Adv. Funct. Mater., 29, 1905078 (2019).
- S. Guo, L. Wang, Y. Jin, N. Piao, Z. Chen, G. Tian, J. Li, C. Zhao, and X. He, A polymeric composite protective layer for stable Li metal anodes, Nano Converg., 7, 21
- Y. Hu, Z. Li, Z. Wang, X. Wang, W. Chen, J. Wang, W. Zhong, and R. Ma, Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode, Adv. Sci., 10, 2206995 (2023).
- L. Tan, Q. Chen, P. Chen, X. Huang, L. Li, K. Zou, and D. Liu, Lithium chloride protective layer for stable lithium metal anode via a facile surface chemistry, J. Electroanal. Chem., 928, 117063 (2023).
- Y. Ye, Y. Liu, J. Wu, and Y. Yang, Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode, J. Power Sources, 472, 228520 (2020).