Acknowledgement
본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421045-03)
References
- H. Ishaq, I. Dincer, and C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrog. Energy, 47, 26238-26264 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.149
- M. Yu, K. Wang, and H. Vredenburg, Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen, Int. J. Hydrog. Energy, 46, 21261-21273 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.016
- R. Yukesh Kannah, S. Kavitha, Preethi, O. Parthiba Karthikeyan, G. Kumar, N. V. Dai-Viet, and J. Rajesh Banu, Techno-economic assessment of various hydrogen production methods - A review, Bioresour. Technol., 319, 124554 (2021).
- A. G. Olabi, A. saleh bahri, A. A. Abdelghafar, A. Baroutaji, E. T. Sayed, A. H. Alami, H. Rezk, and M. A. Abdelkareem, Large-vscale hydrogen production and storage technologies: Current status and future directions, Int. J. Hydrog. Energy, 46, 23498-23528 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.110
- R. Kumar, A. Kumar, and A. Pal, Overview of hydrogen production from biogas reforming: Technological advancement, Int. J. Hydrog. Energy, 47, 34831-34855 (2022). https://doi.org/10.1016/j.ijhydene.2022.08.059
- J. M. Lavoie, Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Front. Chem., 2, 00081 (2014).
- S. A. Ghoneim, R. A. El-Salamony, and S. A. El-Temtamy, Review on innovative catalytic reforming of natural gas to syngas, World J. Eng. Res. Technol., 4, 116-139 (2016). https://doi.org/10.4236/wjet.2016.41011
- N. Kumar, M. Shojaee, and J. J. Spivey, Catalytic bi-reforming of methane: From greenhouse gases to syngas, Curr. Opin. Chem. Eng., 9, 8-15 (2015). https://doi.org/10.1016/j.coche.2015.07.003
- O. Muraza and A. Galadima, A review on coke management during dry reforming of methane, Int. J. Energy Res., 39, 1196-1216 (2015). https://doi.org/10.1002/er.3295
- I. Angelidaki, L. Treu, P. Tsapekos, G. Luo, S. Campanaro, H. Wenzel, and P. G. Kougias, Biogas upgrading and utilization: Current status and perspectives, Biotechnol. Adv., 36, 452-466 (2018). https://doi.org/10.1016/j.biotechadv.2018.01.011
- O. W. Awe, Y. Zhao, A. Nzihou, D. P. Minh, and N. Lyczko, A review of biogas utilisation, purification and upgrading technologies, Waste Biomass Valori., 8, 267-283 (2017). https://doi.org/10.1007/s12649-016-9826-4
- U. S. Mohanty, M. Ali, M. R. Azhar, A. Al-Yaseri, A. Keshavarz, and S. Iglauer, Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review, Int. J. Hydrog. Energy, 46, 30750-30759 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.196
- D. B. L. Santos, F. B. Noronha, and C. E. Hori, Bi-reforming of methane for hydrogen production using LaNiO3/CexZr1-xO2 as precursor material, Int. J. Hydrog. Energy, 45, 13947-13959 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.096
- S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, A non-equilibrium plasma source: Magnetically stabilized gliding arc discharge: I. Design and diagnostics, Plasma Sources Sci. Technol., 19, 065003 (2010).
- Z. Tan and P. Ai, CO2 reforming of biogas to obtain synthesis gas using non-thermal plasma, J. Energy Inst., 90, 864-874 (2017). https://doi.org/10.1016/j.joei.2016.08.008
- W. Wang, A. Berthelot, S. Kolev, X. Tu, and A. Bogaerts, CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model, Plasma Sources Sci. Technol., 25, 065012 (2016).
- W. Piavis and S. Turn, An experimental investigation of reverse vortex flow plasma reforming of methane, Int. J. Hydrog. Energy, 37, 17078-17092 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.126
- D. H. Lee, Y. H. Song, K. T. Kim, and J. O. Lee, Comparative study of methane activation process by different plasma sources, Plasma Chem. Plasma Process., 33, 647-661 (2013). https://doi.org/10.1007/s11090-013-9456-6
- B. Hrycak, D. Czylkowski, M. Jasinski, M. Dors, and J. Mizeraczyk, Hydrogen production via synthetic biogas reforming in atmospheric-pressure microwave (915 MHz) plasma at high gas-flow output, Plasma Chem. Plasma Process., 39, 695-711 (2019). https://doi.org/10.1007/s11090-019-09962-z
- S. M. A. Mousavi, W. Piavis, and S. Turn, Reforming of biogas using a non-thermal, gliding-arc, plasma in reverse vortex flow and fate of hydrogen sulfide contaminants, Fuel Process. Technol., 193, 378-391 (2019). https://doi.org/10.1016/j.fuproc.2019.05.031
- Y. X. Zeng, L. Wang, C. F. Wu, J. Q. Wang, B. X. Shen, and X. Tu, Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: Understanding the plasma-catalytic synergy, Appl. Catal. B: Environ., 224, 469-478 (2018). https://doi.org/10.1016/j.apcatb.2017.10.017
- J. Martin-Del-Campo, M. Uceda, S. Coulombe, and J. Kopyscinski, Plasma-catalytic dry reforming of methane over Ni-supported catalysts in a rotating gliding arc - Spouted bed reactor, J. CO2 Util., 46, 101474 (2021).
- D. H. Lee, H. Kang, Y. Kim, H. Song, H. Lee, J. Choi, K. T. Kim, and Y. H. Song, Plasma-assisted hydrogen generation: A mechanistic review, Fuel Process. Technol., 247, 107761 (2023)
- W. J. Chung, H. W. Park, and D. W. Park, Effects of arc discharge mode on the efficiency of biogas reforming in an AC-pulsed arc plasma system, Plasma Chem. Plasma Process., 37, 383-399 (2017). https://doi.org/10.1007/s11090-016-9773-7
- J. Zador, M. D. Fellows, and J. A. Miller, Initiation reactions in acetylene pyrolysis, J. Phys. Chem. A, 121, 4203-4217 (2017). https://doi.org/10.1021/acs.jpca.7b03040
- Y. Ma, J. D. Harding, and X. Tu, Catalyst-free low temperature conversion of n-dodecane for co-generation of COx-free hydrogen and C2 hydrocarbons using a gliding arc plasma, Int. J. Hydrog. Energy, 44, 26158-26168 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.067
- J. L. Liu, H. W. Park, W. J. Chung, W. S. Ahn, and D. W. Park, Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge, Chem. Eng. J., 285, 243-251 (2016). https://doi.org/10.1016/j.cej.2015.09.100
- S. B. Shenoy, A. Rabinovich, A. Fridman, and H. Pearlman, Process optimization of methane reforming to syngas using Gliding Arc Plasmatron, Plasma Process. Polym., 16 (2019).