Acknowledgement
본 연구는 산업통상부/한국산업기술평가관리원의 탄소사업기반조성사업(바인더 및 코팅용 피치를 활용한 음극재용 실리콘산화물인조흑연 복합체 개발: 20006777) 및 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원(UD2200061D)에 의하여 수행하였으며 이에 감사드립니다.
References
- S. Vargheese, M. Dinesh, K. V. Kavya, D. Pattappan, R. T. R. Kumar, and Y. Haldorai, Triazine-based 2D covalent organic framework-derived nitrogen-doped porous carbon for supercapacitor electrode, Carbon Lett., 31, 879-886 (2021). https://doi.org/10.1007/s42823-020-00190-6
- M. Pershaanaa, S. Bashir, S. Ramesh, and K. Ramesh, Every bite of Supercap: A brief review on construction and enhancement of supercapacitor, J. Energy Storage, 50, 104599 (2022).
- T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai, Z. Chen, J. Zhang, X. Zhang, and L. Shen, A fast proton-induced pseudocapacitive supercapacitor with high energy and power density, Adv. Funct. Mater., 32, 2107720 (2022).
- R. Kumar, E. Joanni, S. Sahoo, J. J. Shim, W. K. Tan, A. Matsuda, and R. K. Singh, An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials, Carbon, 193, 298-338 (2022). https://doi.org/10.1016/j.carbon.2022.03.023
- H. Lin, Z. Tan, J. Yang, R. Mo, Y. Liang, M. Zheng, H. Hu, H. Dong, X. Liu, Y. Liu, and Y. Xiao, Highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode, J. Energy Storage, 50, 105036 (2022).
- J. Wang, Y. Huang, X. Han, Z. Li, S. Zhang, and M. Zong, A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure, Appl. Surf. Sci., 579, 152247 (2022).
- Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, and G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon, ACS Nano, 4, 1337-1344 (2010). https://doi.org/10.1021/nn901825y
- T. Meenatchi, V. Priyanka, R. Subadevi, W. R. Liu, C. H. Huang, and M. Sivakumar, Probe on hard carbon electrode derived from orange peel for energy storage application, Carbon Lett., 31, 1033-1039 (2021). https://doi.org/10.1007/s42823-020-00217-y
- H. Itoi, S. Kotani, Y. Tanabe, Y. Kasai, R. Suzuki, M. Miyaji, H. Iwata, and Y. Ohzawa, Study of the mesopore size effect on the electrochemical capacitor behaviors of mesoporous carbon/quinone derivative hybrids, Electrochim. Acta, 362, 137119 (2020).
- Y. D. Ma, J. F. Gao, X. W. Chen, and L. B. Kong, Regulation of the mesopore proportion of porous carbon for optimizing the performance of electric double layer capacitors, J. Energy Storage, 35, 102299 (2021).
- A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta, 53, 1083-1091 (2007). https://doi.org/10.1016/j.electacta.2007.01.011
- Y. Ma, J. Yin, H. Liang, D. Yao, Y. Xia, K. Zuo, and Y. P. Zeng, A two step approach for making super capacitors from waste wood, J. Clean. Prod., 279, 123786 (2021).
- R. Lee, C. H. Kwak, H. Lee, S. Kim, and Y. S. Lee, Effect of nitrogen plasma surface treatment of rice husk-based activated carbon on electric double-layer capacitor performance, Appl. Chem. Eng., 33, 71-77 (2022).
- A. Chithra, R. Rajeev, and K. Prabhakaran, C/SiO2 and C/SiC composite foam monoliths from rice husk for thermal insulation and EMI shielding, Carbon Lett., 32, 639-651 (2021).
- Y. H. Hung, T. Y. Liu, and H. Y. Chen, Renewable coffee waste-derived porous carbons as anode materials for high-performance sustainable microbial fuel cells, ACS Sustain. Chem. Eng., 7, 16991-16999 (2019). https://doi.org/10.1021/acssuschemeng.9b02405
- R. C. Andrade, R. S. G. Menezes, R. A. F. Jr, and H. M. C. Andrade, Activated carbon microspheres derived from hydrothermally treated mango seed shells for acetone vapor removal, Carbon Lett., 31, 779-793 (2021). https://doi.org/10.1007/s42823-020-00184-4
- W. Huang, H. Zhang, Y. Huang, W. Wang, and S. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 49, 838-843 (2011). https://doi.org/10.1016/j.carbon.2010.10.025
- L. S. Maia, L. D. Duizit, F. R. Pinhatio, and D. R. Mulinari, Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal, Carbon Lett., 31, 749-762 (2021). https://doi.org/10.1007/s42823-021-00226-5
- A. Khan, R. A. Senthil, J. Pan, S. Osman, Y. Sun, and X. Shu, A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application, Electrochim. Acta, 335, 135588 (2020).
- M. Pagett, K. S. Teng, G. Sullivan, and W. Zhang, Reusing waste coffee grounds as electrode materials: Recent advances and future opportunities, Glob. Chall., 7, 2200093 (2023).
- T. Zhang, K. Tonouchi, Z. Kong, Y. Li, H. Cheng, Y. Qin, and Y. Y. Li, Improvement of coffee grounds high solid thermophilic methane fermentation by co-digestion with in-situ produced waste activated sludge: Performance and stability, Sci. Total Environ., 765, 142551 (2021).
- D. R. Vardon, B. R. Moser, W. Zheng, K. Witkin, R. L. Evangelista, T. J. Strathmann, K. Rajagopalan, and B. K. Sharma, Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar, ACS Sustain. Chem. Eng., 1, 1286-1294 (2013). https://doi.org/10.1021/sc400145w
- Y. H. Chiu, L. Y. Lin, Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors, J. Taiwan Inst. Chem. Eng., 101, 177-185 (2019). https://doi.org/10.1016/j.jtice.2019.04.050
- Z. Dai, P.G. Ren, H. Zhang, X. Gao, Y. L. Jin, Nitrogen-doped and hierarchically porous carbon derived from spent coffee ground for efficient adsorption of organic dyes, Carbon Lett., 31, 1249-1260 (2021). https://doi.org/10.1007/s42823-021-00248-z
- R. Hossain, R. K. Nekouei, I. Mansuri, and V. Sahajwalla, In-situ O/N-heteroatom enriched activated carbon by sustainable thermal transformation of waste coffee grounds for supercapacitor material, J. Energy Storage, 33, 102113 (2021).
- X. Liu, S. Zhang, X. Wen, X. Chen, Y. Wen, X. Shi, and E. Mijowska, High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage, Sci. Rep., 10, 3518 (2020).
- Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kroger, and M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel, 96, 70-76 (2012). https://doi.org/10.1016/j.fuel.2012.01.023
- K. Somnuk, P. Eawlex, and G. Prateepchaikul, Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process, Int. J. Agric. Nat. Resour., 51, 181-189 (2017).
- J. C. Lee, H. J. Kim, H. W. Kim, and H. Lim, Iron-impregnated spent coffee ground biochar for enhanced degradation of methylene blue during cold plasma application, J. Ind. Eng. Chem., 98, 382-388 (2021).
- C. H. Wang, W. C. Wen, H. C. Hsu, and B. Y. Yao, High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor, Adv. Powder Technol., 27, 1387-1395 (2016). https://doi.org/10.1016/j.apt.2016.04.033
- D. M. Xue, S. C. Qi, X. Liu, Y. X. Li, X. Q. Liu, and L. B. Sun, N-doped porous carbons with increased yield and hierarchical pore structures for supercapacitors derived from an N-containing phenyl-riched copolymer, J. Ind. Eng. Chem., 80, 568-575 (2019). https://doi.org/10.1016/j.jiec.2019.08.041
- J. Kim, H. V. T. Nquyen, G. J. Bahk, K. Kwak, and K. K. Lee, Activated carbons effectively purified by post-heat treatment under vacuum conditions, Carbon Lett., 31, 973-984 (2021). https://doi.org/10.1007/s42823-020-00209-y
- Z. Liu, N. Luo, J. Shi, Y. Zhang, C. Xie, W. Zhang, H. Wang, X. He, and Z. Chen, Raman spectroscopy for the discrimination and quantification of fuel blends, J. Raman Spectrosc., 50, 1008-1014 (2019). https://doi.org/10.1002/jrs.5602
- K. Charoensook, C. L. Huang, H. C. Tai, V. V. K. Lanjapalli, L. M. Chiang, S. Hosseini, Y. T. Lin, and Y. Y. Li, Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application, J. Taiwan Inst. Chem. Eng., 120, 246-256 (2021). https://doi.org/10.1016/j.jtice.2021.02.021
- T. Tagaya, Y. Hatakeyama, S. Shiraishi, H. Tsukada, M. J. Mostazo-Lpez, E. Moralln, and D. Cazorla-Amors, Nitrogen-doped seamless activated carbon electrode with excellent durability for electric double layer capacitor, J. Electrochem. Soc., 167, 060523 (2020).
- A. E. Nemr, R. M. Aboughaly, A. E. Sikaily, M. S. Masound, M. S. Ramadan, S. Ragab, Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride, Carbon Lett., 32, 229-249 (2022). https://doi.org/10.1007/s42823-021-00270-1
- K. Ideta, D. W. Kim, T. Kim, K. Nakabayashi, J. Miyawaki, J. I. Park, and S. H. Yoon, Effect of pore size in activated carbon on the response characteristic of electric double layer capacitor, J. Ind. Eng. Chem., 102, 321-326 (2021). https://doi.org/10.1016/j.jiec.2021.07.014
- C. Young, J. Lin, J. Wang, B. Ding, X. Zhang, S. M. Alshehri, T. Ahamed, R. R. Salunkhe, S. A. Hossain, J. H. Khan, Y. Ide, J. Kim, J. Henzie, K. C. W. Wu, N. Kobayashi, and Y. Yamauchi, Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors, Chem. Eur. J., 24, 6127-6132 (2018). https://doi.org/10.1002/chem.201705465
- N. Murugan, S. Thangarasu, S. B. Seo, Y. R. Choi, S. S. Magdum, T. H. Oh, and Y. A. Kim, Facile synthesis of interconnected layered porous carbon framework for high-performance supercapacitors, Carbon Lett., 33, 791-802 (2023). https://doi.org/10.1007/s42823-023-00460-z
- B. M. Lee, B. S. Choi, J. Y. Lee, S. K. Hong, J. S. Lee, and J. H. Choi, Fabrication of porous carbon beads from polyacrylonitrile as electrode materials for electric double-layer capacitors, Carbon Lett., 31, 67-74 (2021). https://doi.org/10.1007/s42823-020-00150-0
- C. Poochai, A. Srikhaow, J. Lohitkarn, T. Kongthong, S. Tuantranont, S. Tuantranont, V. Primpray, N. Maeboonruan, A. Wisitsoraat, and C. Sriprachuabwong, Waste coffee grounds derived nanoporous carbon incorporated with carbon nanotubes composites for electrochemical double-layer capacitors in organic electrolyte, J. Energy Storage, 43, 103169 (2021).
- R. Atchudan, T. Nesakumar, J. I. Edison, M. Shanmugam, S. Perumal, R. Vinodh, T. Somanathan, and Y. R. Lee, Biowaste-originated heteroatom-doped porous carbonaceous material for electrochemical energy storage application, J. Ind. Eng. Chem., 98, 308-317 (2021). https://doi.org/10.1016/j.jiec.2021.03.037
- J. Cheng, Z. Lu, X. Zhao, X. Chen, Y. Zhu, and H. Chu. Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials, Carbon Lett., 31, 57-65 (2021). https://doi.org/10.1007/s42823-020-00149-7
- T. H. Hsieh, H. L. Wang, G. T. Yu, G. M. Huang, J. H. Lin, Meso-pore dominant activated carbon from spent coffee grounds for high-performance electrochemical capacitors in organic electrolyte, J. Environ. Chem. Eng., 9, 106418 (2021).