DOI QR코드

DOI QR Code

Development and evaluation of a compact gamma camera for radiation monitoring

  • Received : 2023.02.26
  • Accepted : 2023.04.19
  • Published : 2023.08.25

Abstract

The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2020R1C1C1004584).

References

  1. J.E. Lees, S.L. Bugby, A.P. Bark, D.J. Bassford, P.E. Blackshaw, A.C. Perkins, A hybrid camera for locating sources of gamma radiation in the environment, J. Instrum. 8 (2013), P10021.
  2. G. Amoyal, V. Schoepff, F. Carrel, M. Michel, N.B. de Lanaute, J.C. Angelique, Development of a hybrid gamma camera based on Timepix3 for nuclear industry applications, Nucl. Instrum. Methods Phys. Res. B 987 (2021), 164838.
  3. C. Zhao, B. Zhu, M. Zhao, Q. Chen, Z. Wang, R. Zhou, C. Yang, Development of a modular high-sensitivity high-uniformity gamma camera for radiation monitoring applications, Nucl. Instrum. Methods Phys. Res. B 1003 (2021), 165340.
  4. C.H. Baek, S.J. An, H.I. Kim, S.W. Kwak, Y.H. Chung, Development of a pinhole gamma camera for environmental monitoring, Radiat. Meas. 59 (2013) 114-118. https://doi.org/10.1016/j.radmeas.2013.06.004
  5. F. Carrel, R.A. Khalil, P. Blot, K. Boudergui, S. Colas, M. Gmar, F. Lemasle, N. Saurel, V. Schoepff, H. Toubon, GAMPIX: a new generation of gamma camera for hot spot localization, in: Proceddings of the ISOE Conference, 2010.
  6. F. Carrel, R.A. Khalil, S. Colas, D.D. Toro, G. Ferrand, E. Gaillard-Lecanu, M. Gmar, D. Hameau, S. Jahan, F. Laine, A.S. Lalleman, GAMPIX: a new gamma imaging system for radiological safety and homeland security purposes, in: 2011 IEEE NSS Conference Record, 2011, pp. 4739-4744.
  7. Y. Hu, Z. Lyu, P. Fan, T. Xu, S. Wang, Y. Liu, T. Ma, A wide energy range and 4pview gamma camera with interspaced position-sensitive scintillator array and embedded heavy metal bars, Sensors 23 (2023) 953.
  8. W. Siman, S. Cheenu Kappadath, Performance characteristics of a new pixelated portable gamma camera, Med. Phys. 39 (2012) 3435-3444. https://doi.org/10.1118/1.4718874
  9. H.I. Kim, S.J. An, Y.H. Chung, S.W. Kwak, Development of an all-in-one gamma camera/CCD system for safeguard verification, J. Kor. Phys. Soc. 65 (2014) 2013-2016. https://doi.org/10.3938/jkps.65.2013
  10. D.M. Im, J.H. Jung, Y. Choi, D. Jang, D. Kim, Y.H. Kim, J.H. Kim, Development of compact coded aperture gamma camera for radiation monitoring in nuclear facility, in: 2017 IEEE NSS/MIC, 2017, pp. 1-3.
  11. J. Islamian, A. Azazrm, B. Mahmoudian, E. Gharapapagh, Advances in pinhole and multi-pinhole collimators for single photon emission computed tomography imaging, World J. Nucl. Med. 14 (2015) 3-9. https://doi.org/10.4103/1450-1147.150505
  12. F. Garibaldi, R. Accorsi, M.N. Cinti, E. Cisbani, S. Colilli, F. Cusanno, G. De Vincentis, A. Fortuna, R. Fratoni, B. Girolami, F. Ghio, Small animal imaging by single photon emission using pinhole and coded aperture collimation, IEEE Trans. Nucl. Sci. 52 (2005) 573-579. https://doi.org/10.1109/TNS.2005.851428
  13. H. Zhang, B. Zhong, H. Shen, L. Cheng, J. Li, Research on a Monte Carlo simulation method of neutron coded-aperture imaging, Nucl. Sci. Eng. 196 (2022) 1236-1246. https://doi.org/10.1080/00295639.2022.2070386
  14. R. Zhang, X. Tang, P. Gong, P. Wang, C. Zhou, X. Zhu, D. Liang, Z. Wang, Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron, Nucl. Eng. Technol. 52 (2020) 2250-2261. https://doi.org/10.1016/j.net.2020.03.024
  15. J.H. Won, D.H. Han, S.J. Lee, C.H. Baek, Development of a gamma camera with a diverging collimator using DMLS 3D printing, Jpn. Mag. 25 (2020) 606-613.
  16. M. Jeong, B. Van, B.T. Wells, J.D. Lawrence, M.D. Hammig, Comparison between pixelated scintillators: CsI (Tl), LaCl 3 (Ce) and LYSO (Ce) when coupled to a silicon photomultipliers array, Nucl. Instrum. Methods Phys. Res. B 893 (2018) 75-83. https://doi.org/10.1016/j.nima.2018.03.024
  17. K. Nakanishi, S. Yamamoto, J. Kataoka, Performance comparison of finely pixelated LYSO-and GAGG-based Si-PM gamma cameras for high resolution SPECT, Nucl. Instrum. Methods Phys. Res. B 872 (2017) 107-111. https://doi.org/10.1016/j.nima.2017.08.013
  18. B. Yu, S. Bae, C.H. Baek, J.Y. Yeom, K. Lee, H. Lee, Development of compact gamma camera using SoC-FPGA based modularized DAQ, in: 2019 IEEE NSS/MIC, 2019, pp. 1-3.
  19. G. Saldana-Gonzalez, H. Salazar-Ibarguen, O.M. Bravo, E. Moreno-Barbosa, 2D image reconstruction with a FPGA-based architecture in a gamma camera application, in: 2010 20th CONIELECOMP, 2010, pp. 102-105.