DOI QR코드

DOI QR Code

Monte Carlo simulation and study of REE/PET composites with wide γ-ray protection

  • Tongyan Cui (School of Material Design and Engineering, Beijing Institute of Fashion Technology) ;
  • Ruixin Chen (School of Material Design and Engineering, Beijing Institute of Fashion Technology) ;
  • Shumin Bi (School of Material Design and Engineering, Beijing Institute of Fashion Technology) ;
  • Rui Wang (School of Material Design and Engineering, Beijing Institute of Fashion Technology) ;
  • Zhongjian Ma (Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Qingxiu Jia (School of Material Design and Engineering, Beijing Institute of Fashion Technology)
  • Received : 2023.02.24
  • Accepted : 2023.04.19
  • Published : 2023.08.25

Abstract

In this paper, rare earth element (REE)/polyester composites were designed with lanthanum oxide, gadolinium oxide, and lutetium oxide as ray shielding agents, and polyethylene terephthalate (PET) as the base. Monte Carlo simulation was carried out using FLUKA software. We found that the radiation protection performance of the composite is affected by the type and amount of REE; a higher amount of REE equated to a better radiation protection performance of the composite. When the thickness of the composite and total thickness of the REE is constant, the number of superimposed layers inside the composite does not affect its shielding performance. Compared with a single-type REE/PET composite, a mixed-type REE/PET composite has a wider range of γ-ray absorption and better radiation protection performance. When the mass ratio of PET to REE is 2:8 and different types of REE are mixed with equal mass, several 0.2 cm-thick mixed-type REE/PET composites can shield >70% of 60 and 80 KeV γ-rays.

Keywords

Acknowledgement

The authors sincerely acknowledge the financial support from the Beijing Scholars Program(RCQJ20303), the Project of Top Young Talents of Beijing Excellent Talents Training Program (2018), the Beijing Nova Program(20220484213), and the Innovation Team-building Program of Beijing Institute of Fashion Technology(BIFTTD201904).

References

  1. A. Bijanu, R. Arya, V. Agrawal, A.S. Tomaet, V.S. Gowri, S.K. Sanghi, D. Mishra, S.T. Salammal, Metal-polymer composites for radiation protection: a review, J. Polym. Res. 28 (10) (2021) 392.
  2. M.R. Kacal, F. Akman, M.I. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers, Nucl. Eng. Technol. 51 (3) (2019) 818-824. https://doi.org/10.1016/j.net.2018.11.011
  3. T. Ozdemir, A. Gungor, I.K. Akbay, H. Uzun, Y. Babuccuoglu, Nano lead oxide and EPDM composite for development of polymer based radiation shielding material: gamma irradiation and attenuation tests, Radiat. Phys. Chem. 144 (2018) 248-255. https://doi.org/10.1016/j.radphyschem.2017.08.021
  4. K.A. Dubey, C.V. Chaudhari, S.K. Suman, N. Raje, R.K. Mondal, V. Grover, S. Murali, Y.K. Bhardwaj, L. Varshney, Synthesis of flexible polymeric shielding materials for soft gamma rays: physicomechanical and attenuation characteristics of radiation crosslinked polydimethylsiloxane/Bi2O3 composites, Polym. Compos. 37 (3) (2016) 756-762. https://doi.org/10.1002/pc.23232
  5. F. Kazemi, S. Malekie, A Monte Carlo study on the shielding properties of a novel polyvinyl alcohol (PVA)/WO3 composite, against gamma rays, using the MCNPX code, Journal of Biomedical Physics & Engineering 9 (4) (2019) 465.
  6. M.C. Molina Higgins, N.A. Radcliffe, M. Toro-Gonzalez, J.V. Rojas, Gamma ray attenuation of hafnium dioxide-and tungsten trioxide-epoxy resin composite, J. Radioanal. Nucl. Chem. 322 (2) (2019) 707-716. https://doi.org/10.1007/s10967-019-06714-3
  7. M.V. Muthamma, S.G. Bubbly, S.B. Gudennavar, K.C. Shyama Narendranath, Poly (vinyl alcohol)ebismuth oxide composites for X-ray and γ-ray shielding applications, J. Appl. Polym. Sci. 136 (37) (2019), 47949.
  8. H. Jing, L.Y. Geng, S.Y. Qiu, H.W. Zou, M. Liang, D. Deng, Research progress of rare earth composite shielding materials, J. Rare Earths 41 (2023) 32-41.
  9. S. Sambhudevan, B. Shankar, A. Saritha, K. Joseph, J. Philip, T. Saravanan, Development of X-ray protective garments from rare earth-modified natural rubber composite, J. Elastomers Plast. 49 (6) (2017) 527-544. https://doi.org/10.1177/0095244316676866
  10. Y. Wang, G.K. Wang, T. Hu, S.P. Wen, S. Hu, L. Liu, Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: a Monte Carlo simulation study, Nucl. Eng. Technol. 52 (7) (2019) 1565-1570.
  11. P.F. Lou, X.B. Teng, Q.X. Jia, Y.Q. Wang, L.Q. Zhang, Preparation and structure of rare earth/thermoplastic polyurethane fiber for X-ray shielding, J. Appl. Polym. Sci. 136 (17) (2018), 47435.
  12. Y.H. Sun, X.N. Wang, Q.X. Jia, J. Yang, Preparation of modified rare earth lanthanum oxide/polypropylene nonwoven fabric by meltblown method, J. Phys.: Conf. Ser. 2194 (1) (2022), 012046.
  13. K.M. Mahmoud, Y.S. Rammah, Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code, Phys. B Condens. Matter 577 (2020), 411756.
  14. D. Foti, Recycled Waste PET for Sustainable Fiber-Reinforced concrete[M]//Use of Recycled Plastics in Eco-Efficient Concrete, Woodhead Publishing, 2019, pp. 387-410.
  15. C. Pudack, M. Stepanski, P. Fassler, PET Recycling-Contributions of crystallization to sustainability, Chem. Ing. Tech. 92 (4) (2020) 452-458. https://doi.org/10.1002/cite.201900085
  16. R.R. Zhang, X.T. Ma, X.X. Shen, Y.J. Zhai, T.Z. Zhang, C.X. Ji, J.L. Hong, PET bottles recycling in China: an LCA coupled with LCC case study of blanket production made of waste PET bottles, J. Environ. Manag. 260 (2020), 110062.
  17. B. Sadeghi, Y. Marfavi, R. AliAkbari, E. Kowsari, F. Borbor Ajdari, S. Ramakrishna, Recent studies on recycled PET fibers: production and applications: a review, Materials Circular Economy 3 (2021) 1-18. https://doi.org/10.1007/s42824-020-00015-x
  18. S.I. Park, C.W. Kang, S.Y. Cho, S.M. Lee, H.J. Kim, Y.J. Ko, J. Choi, S.U. Son, Fabrication of poly (ethylene terephthalate) fiber@ microporous organic polymer with amino groups@ Cu films for flexible and metal-economical electromagnetic interference shielding materials, Langmuir 36 (30) (2020) 8745-8752. https://doi.org/10.1021/acs.langmuir.0c00962
  19. H.J. Oh, V.D. Dao, H.S. Choi, Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction, Appl. Surf. Sci. 435 (2018) 7-15. https://doi.org/10.1016/j.apsusc.2017.11.043
  20. K. Wang, Q. Ma, Y. Zhang, et al., Ag NPs-assisted synthesis of stable Cu NPs on PET fabrics for antibacterial and electromagnetic shielding performance, Polymers 12 (4) (2020) 783.
  21. S.C. Kim, Preparation and performance evaluation of X-ray-shielding barium sulfate film for medical diagnosis using PET recycling and multi-carrier principles, Coatings 12 (7) (2022) 973.
  22. C. Pudack, M. Stepanski, P. Fassler, PET Recycling-Contributions of crystallization to sustainability, Chem. Ing. Tech. 92 (4) (2020) 452-458. https://doi.org/10.1002/cite.201900085
  23. R.R. Zhang, X.T. Ma, X.X. Shen, Y.J. Zhai, T.Z. Zhang, C.X. Ji, J.L. Hong, PET bottles recycling in China: an LCA coupled with LCC case study of blanket production made of waste PET bottles, J. Environ. Manag. 260 (2020), 110062.
  24. B. Sadeghi, Y. Marfavi, R. AliAkbari, E. Kowsari, F. Borbor Ajdari, S. Ramakrishna, Recent studies on recycled PET fibers: production and applications: a review, Materials Circular Economy 3 (2021) 1-18. https://doi.org/10.1007/s42824-020-00015-x
  25. T. Ma, Y.Y. Liu, Z.G. Liu, S.Z. Liu, M. Jia, S.N. Yin, Preparation of the new-type gradient nuclear radiation shielding material, Polym. Bull. 10 (2012) 58-62.
  26. A. Lee, J. Cha, D. Lim, J. Youk, H. Jeon, A study on the radiation shielding and absorption effects of nonwoven composites by monte-carlo simulation analysis, Appl. Sci. 12 (7) (2022) 3570.
  27. I. Akkurt, R.B. Malidarre, I. Kartal, K. Gunoglu, Monte Carlo simulations study on gamma ray-neutron shielding characteristics for vinyl ester composites, Polym. Compos. 42 (9) (2021) 4764-4774. https://doi.org/10.1002/pc.26185
  28. S.S. Manickam, J.R. McCutcheon, Characterization of polymeric nonwovens using porosimetry, porometry and X-ray computed tomography, J. Membr. Sci. 407 (2012) 108-115. https://doi.org/10.1016/j.memsci.2012.03.022
  29. Y. Li, Q. Zhu, K.W. Yeung, Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textiles, Textil. Res. J. 72 (5) (2002) 435-446. https://doi.org/10.1177/004051750207200511
  30. Y. Li, T. Ma, S.T. Yang, D.A. Kniss, Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds, Biomaterials 22 (6) (2001) 609-618. https://doi.org/10.1016/S0142-9612(00)00224-6
  31. S. Wang, T. Li, C. Chen, S. Chen, B. Liu, J. Crittenden, Non-woven PET fabric reinforced and enhanced the performance of ultrafiltration membranes composed of PVDF blended with PVDF-g-PEGMA for industrial applications, Appl. Surf. Sci. 435 (2018) 1072-1079. https://doi.org/10.1016/j.apsusc.2017.11.193