DOI QR코드

DOI QR Code

Health monitoring of carbon fiber-reinforced polymer composites in γ-radiation environment using embedded fiber Bragg grating sensors

  • Jing Zhong (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Feida Chen (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Yuehao Rui (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Yong Li (College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Xiaobin Tang (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics)
  • Received : 2022.05.27
  • Accepted : 2023.04.18
  • Published : 2023.08.25

Abstract

Fiber-reinforced polymer (FRP) composites are considered suitable candidates for structural materials of spacecrafts due to their excellent properties of high strength, light weight, and corrosion resistance. An online health monitoring method for FRP composites must be applied to space structures. However, the application of existing health monitoring methods to space structures is limited due to the harsh space environment. Here, carbon fiber-reinforced polymer (CFRP) composites embedded with fiber Bragg grating (FBG) sensors were prepared to explore the feasibility of strain monitoring using embedded FBG sensors in γ-radiation environment. The analysis of the influence of radiation on the strain monitoring demonstrated that the embedded FBG can be successfully applied to the health monitoring of FRP composites in radiation environment.

Keywords

Acknowledgement

The authors would like to thank Hongquan Liu, Jiaqi Shi, and Yifan Yang of Nanjing University of Aeronautics and Astronautics for the help in materials preparation. In addition, this work was supported by Postdoctoral Research Foundation of China (Grant No.2020M671488), the Fundamental Research Funds for the Central Universities (Grant No. NS2021036), and Postgraduate Research & Practice Innovation Program of NUAA (Grant No. xcxjh20210622).

References

  1. G. Xian, R. Guo, C. Li, Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite, Compos. Struct. 281 (2022), 115060.
  2. T.K. Das, P. Ghosh, N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review, Adv. Compos. Hybrid Mater. 2 (2019) 214-233. https://doi.org/10.1007/s42114-018-0072-z
  3. D.D.L. Chung, Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites, Mater. Sci. Eng.: R: Rep. 113 (2017) 1-29. https://doi.org/10.1016/j.mser.2017.01.002
  4. F. Akman, H. Ogul, I. Ozkan, M.R. Kacal, O. Agar, H. Polat, K. Dilsiz, Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite, Nucl. Eng. Technol. 54 (2022) 283-292. https://doi.org/10.1016/j.net.2021.07.006
  5. W. Ramadan, K. Sakr, M. Sayed, N. Maziad, N. El-Faramawy, Investigation of acrylic/boric acid composite gel for neutron attenuation, Nucl. Eng. Technol. 52 (2020) 2607-2612. https://doi.org/10.1016/j.net.2020.04.014
  6. J. Jang, S. Hong, J. Kim, N. Goo, W. Yu, Accelerated testing method for predicting long-term properties of carbon fiber-reinforced shape memory polymer composites in a low earth orbit environment, Polymers. 13 (2021) 1628.
  7. L. Wang, F. Zhang, Y. Liu, γ-rays radiation resistant shape memory cyanate ester resin and its composites with high transition temperature, Smart Mater. Struct. 28 (2019), 075039.
  8. M. Nishida, A. Hongo, Y. Hiraiwa, M. Higashide, Effects of gamma ray irradiation on penetration hole in and fragment size from carbon fiber reinforced composite plates in hypervelocity impacts, Compos. B Eng. 169 (2019) 229-238. https://doi.org/10.1016/j.compositesb.2019.04.007
  9. R. Pastore, A. Delfini, M. Albano, A. Vricella, M. Marchetti, F. Santoni, F. Piergentili, Outgassing effect in polymeric composites exposed to space environment thermal-vacuum conditions, Acta Astronaut. 170 (2020) 466-471. https://doi.org/10.1016/j.actaastro.2020.02.019
  10. J.H. Jang, S.B. Hong, J. Kim, N.S. Goo, H. Lee, W. Yu, Long-term properties of carbon fiber-reinforced shape memory epoxy/polymer composites exposed to vacuum and ultraviolet radiation, Smart Mater. Struct. 28 (2019), 115013.
  11. L. Zheng, L. Wang, Z. Wang, L. Wang, Effects of γ-ray irradiation on the fatigue strength, thermal conductivities and thermal stabilities of the glass fibres/epoxy resins composites, Acta Metall. Sin. 31 (2018) 105-112. https://doi.org/10.1007/s40195-017-0692-2
  12. D. Sekulic, M.M. Stevanovic, Effects of gamma irradiation and post-irradiation annealing on carbon/epoxy UDC properties deduced by methods of local loading, J. Nucl. Mater. 412 (2011) 190-194. https://doi.org/10.1016/j.jnucmat.2011.01.125
  13. Z.X. Wu, J.W. Li, C.J. Huang, R.J. Huang, L.F. Li, Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite, J. Nucl. Mater. 441 (2013) 67-72. https://doi.org/10.1016/j.jnucmat.2013.05.041
  14. L. Liu, L. Feng, T. Ma, Z. Xu, X. Pei, Y. Liu, H. Shi, Y. Tang, L. Liu, H. Deng, C. Wang, Mechanical properties, thermal stability and microstructure evolution of carbon fiber-reinforced epoxy composites exposed to high-dose γ-rays, Radiat. Phys. Chem. 194 (2022), 110056.
  15. R. Li, Y. Gu, Z. Yang, M. Li, S. Wang, Z. Zhang, Effect of g irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite, J. Nucl. Mater. 466 (2015) 100-107. https://doi.org/10.1016/j.jnucmat.2015.07.037
  16. E.N. Hoffman, T.E. Skidmore, Radiation effects on epoxy/carbon-fiber composite, J. Nucl. Mater. 392 (2009) 371-378. https://doi.org/10.1016/j.jnucmat.2009.03.027
  17. S. Hassani, M. Mousavi, A.H. Gandomi, Structural health monitoring in composite structures: a comprehensive review, Sensors. 22 (2022) 153.
  18. S. Goossens, F. Berghmans, Z. Sharif Khodaei, F. Lambinet, E. Karachalios, D. Saenz-Castillo, T. Geernaert, Practicalities of BVID detection on aerospace-grade CFRP materials with optical fibre sensors, Compos. Struct. 259 (2021), 113243.
  19. C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, K. Khellil, R. Lachat, On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: a literature review, Compos. Struct. 215 (2019) 127-149. https://doi.org/10.1016/j.compstruct.2019.02.046
  20. A. Wronkowicz, K. Dragan, K. Lis, Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures, Compos. Struct. 203 (2018) 71-84. https://doi.org/10.1016/j.compstruct.2018.06.109
  21. S. Sikdar, D. Liu, A. Kundu, Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel, Compos. B Eng. 228 (2022), 109450.
  22. L. Grassia, M. Iannone, A. Califano, A. D'Amore, Strain based method for monitoring the health state of composite structures, Compos. B Eng. 176 (2019), 107253.
  23. O. Ahmed, X. Wang, M. Tran, M. Ismadi, Advancements in fiber-reinforced polymer composite materials damage detection methods: towards achieving energy-efficient SHM systems, Compos. B Eng. 223 (2021), 109136.
  24. O. Rifaie-Graham, E.A. Apebende, L.K. Bast, N. Bruns, Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage, Adv. Mater. 30 (2018), 1705483.
  25. R. Di Sante, Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications, Sensors. 15 (2015) 18666-18713. https://doi.org/10.3390/s150818666
  26. J. Frieden, J. Cugnoni, J. Botsis, T. Gmur, D. Coric, High-speed internal strain measurements in composite structures under dynamic load using embedded FBG sensors, Compos. Struct. 92 (2010) 1905-1912. https://doi.org/10.1016/j.compstruct.2010.01.007
  27. H. Kim, J. Yoon, H. Kim, J. Han, Measurement of the thermal expansion of space structures using fiber Bragg grating sensors and displacement measuring interferometers, Meas. Sci. Technol. 21 (2010), 085704.
  28. M. Mulle, A. Yudhanto, G. Lubineau, R. Yaldiz, W. Schijve, N. Verghese, Internal strain assessment using FBGs in a thermoplastic composite subjected to quasi-static indentation and low-velocity impact, Compos. Struct. 215 (2019) 305-316. https://doi.org/10.1016/j.compstruct.2019.02.085
  29. G. Szebenyi, Y. Blossl, G. Hegedus, T. Tabi, T. Czigany, R. Schledjewski, Fatigue monitoring of flax fibre reinforced epoxy composites using integrated fibre-optical FBG sensors, Compos. Sci. Technol. 199 (2020), 108317.
  30. S. Mohanta, Y. Padarthi, S. Chokkapu, J. Gupta, S. Neogi, Ultra-violet health monitoring of smart composite laminate using embedded fiber Bragg grating sensors, J. Compos. Mater. 54 (2020) 3143-3158. https://doi.org/10.1177/0021998320911709
  31. A.I. Gusarov, D.S. Starodubov, F. Berghmans, Design of a radiation-hard optical fiber Bragg grating temperature sensor, Proc. SPIE Int. Soc. Opt. Eng. 3872 (1999) 43-50.
  32. A.V. Faustov, A.I. Gusarov, P. Megret, M. Wuilpart, D. Kinet, A.V. Zhukov, S.G. Novikov, V.V. Svetukhin, A.A. Fotiadi, Gamma radiation-induced blue shift of resonance peaks of Bragg gratings in pure silica fibres, Quant. Electron. 46 (2016) 150-154. https://doi.org/10.1070/QEL15879
  33. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, C. Marcandella, Radiation effects on silica-based optical fibers: recent advances and future challenges, IEEE Trans. Nucl. Sci. 60 (2013) 2015-2036. https://doi.org/10.1109/TNS.2012.2235464
  34. A. Gusarov, S.K. Hoeffgen, Radiation effects on fiber gratings, IEEE Trans. Nucl. Sci. 60 (2013) 2037-2053. https://doi.org/10.1109/TNS.2013.2252366
  35. D. Kinet, C. Broadway, A. Gusarov, P. Megret, C. Caucheteur, K. Kalli, S.O. O'Keeffe, G. Brambilla, Fibre Bragg gratings wavelength evolution and thermal sensitivity under gamma irradiation, in: Seventh European Workshop on Optical Fibre Sensors, Limassol, Cyprus, October 1-4, 2019.
  36. M.A.S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. Li, D. Carpenter, L. Hu, J. Daw, G. Laffont, S. Nehr, K.P. Chen, Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores, Opt. Express. 26 (2018), 11775.
  37. J. He, B. Xu, X. Xu, C. Liao, Y. Wang, Review of femtosecond-laser-inscribed fiber Bragg gratings: fabrication technologies and sensing applications, Photonic Sensors. 11 (2021) 203-226. https://doi.org/10.1007/s13320-021-0629-2
  38. J. Chen, J. Wang, X. Li, L. Sun, S. Li, A. Ding, Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors, Compos. Struct. 242 (2020), 112168.
  39. A. Birri, B.A. Wilson, T.E. Blue, Deduced refractive index profile changes of type I and type II gratings when subjected to ionizing radiation, IEEE Sens. J. 19 (2019) 5000-5006. https://doi.org/10.1109/JSEN.2019.2904013
  40. S.J. Mihailov, Fiber Bragg grating sensors for harsh environments, Sensors. 12 (2012) 1898-1918. https://doi.org/10.3390/s120201898
  41. H. Henschel, D. Grobnic, S.K. Hoeffgen, J. Kuhnhenn, S.J. Mihailov, U. Weinand, Development of highly radiation resistant fiber Bragg gratings, IEEE Trans. Nucl. Sci. 58 (2011) 2103-2110. https://doi.org/10.1109/TNS.2011.2160204
  42. A. Theodosiou, A. Leal-Junior, C. Marques, A. Frizera, A.J.S. Fernandes, A. Stancalie, A. Ioannou, D. Ighigeanu, R. Mihalcea, C.D. Negut, K. Kalli, Comparative study of γ- and e-radiation-induced effects on FBGs using different femtosecond laser inscription methods, Sensors. 21 (2021) 8379.
  43. A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Perisse, J. Mace, A. Taouri, A. Boukenter, M. Cannas, Y. Ouerdane, Radiation vulnerability of fiber Bragg gratings in harsh environments, J. Lightwave Technol. 33 (2015) 2646-2651. https://doi.org/10.1109/JLT.2014.2364526
  44. L. Remy, G. Cheymol, A. Gusarov, Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence, IEEE Trans. Nucl. Sci. 63 (2016) 2317-2322. https://doi.org/10.1109/TNS.2016.2570948
  45. Effect of kGy dose level gamma radiation on Ge-doped FBGs and femtosecond-laser-inscribed pure-silica-core FBGs, in: 16th International Conference on Optical Communications and Networks, Wuzhen, China, August 7-10, 2017.