DOI QR코드

DOI QR Code

Neutron-irradiated effect on the thermoelectric properties of Bi2Te3-based thermoelectric leg

  • Huanyu Zhao (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Kai Liu (State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University) ;
  • Zhiheng Xu (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Yunpeng Liu (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Xiaobin Tang (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics)
  • Received : 2022.10.14
  • Accepted : 2023.04.25
  • Published : 2023.08.25

Abstract

Thermoelectric (TE) materials working in radioisotope thermoelectric generators are irradiated by neutrons throughout its service; thus, investigating the neutron irradiation stability of TE devices is necessary. Herein, the influence of neutron irradiation with fluences of 4.56 × 1010 and 1 × 1013 n/cm2 by pulsed neutron reactor on the electrical and thermal transport properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thermoelectric alloys prepared by cold-pressing and molding is investigated. After neutron irradiation, the properties of thermoelectric materials fluctuate, which is related to the material type and irradiation fluence. Different from p-type thermoelectric materials, neutron irradiation has a positive effect on n-type Bi2Te2.7Se0.3 materials. This result might be due to the increase of carrier mobility and the optimization of electrical conductivity. Afterward, the effects of p-type and n-type TE devices with different treatments on the output performance of TE devices are further discussed. The positive and negative effects caused by irradiation can cancel each other to a certain extent. For TE devices paired with p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric legs, the generated power and conversion efficiency are stable after neutron irradiation.

Keywords

Acknowledgement

This work is supported by the Ministry of Science and Technology Foreign Expert Project (Grant No. G2022181007L), the Shanghai Aerospace Science and Technology Innovation Project (Grant No. SAST2020-097), and the Excellent Postdoctoral Program of Jiangsu Province (Grant No. 2022ZB235).

References

  1. Y. Xing, R. Liu, J. Liao, et al., A device-to-material strategy guiding the "double-high" thermoelectric module, Joule 4 (11) (2020) 2475-2483. https://doi.org/10.1016/j.joule.2020.08.009
  2. G. Wang, R. Hu, H. Wei, et al., The effect of temperature changes on electrical performance of the betavoltaic cell, Appl. Radiat. Isot. 68 (12) (2010) 2214-2217. https://doi.org/10.1016/j.apradiso.2010.06.011
  3. H. Williams, R. Ambrosi, N. Bannister, et al., A conceptual spacecraft radioisotope thermoelectric and heating unit (RTHU), Int. J. Energy Res. 36 (12) (2012) 1192-1200. https://doi.org/10.1002/er.1864
  4. A Chmielewski, RTGs for space exploration at the end of the 20th century[C]/. Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, 1989, pp. 715-720.
  5. S.A. Whalen, C.A. Apblett, T.L. Aselage, Improving power density and efficiency of miniature radioisotopic thermoelectric generators, J. Power Sources 180 (1) (2008) 657-663. https://doi.org/10.1016/j.jpowsour.2008.01.080
  6. Y. Ma, J. Liu, H. Yu, et al., Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor, Nucl. Eng. Technol. 54 (6) (2022) 2094-2106. https://doi.org/10.1016/j.net.2022.01.002
  7. I.L.A. Daryush, Thermoelectric systems: ion beam enhanced thermoelectric properties, Appl. Surf. Sci. 310 (2014) 217-220. https://doi.org/10.1016/j.apsusc.2014.04.214
  8. N. Kempf, C. Karthik, B.J. Jaques, et al., Proton irradiation effect on thermoelectric properties of nanostructured n-type half-Heusler Hf0.25Zr0.75NiSn0.99Sb0.01, Appl. Phys. Lett. 112 (2018), 243902.
  9. J.W. Vandersande, J. Mccormack, A. Zoltan, et al., Effect of neutron irradiation on the thermoelectric properties of SiGe alloys, Solid State Phys. 2 (1990) 392-396.
  10. P. Ballo, P. Macko, L. Harmatha, et al., Thermoelectrical parameters of fast neutron irradiated GeSi alloys, Phys. Status Solidi 150 (2) (2010) 687-693. https://doi.org/10.1002/pssa.2211500211
  11. H. Wang, K.J. Leonard, Effect of high fluence neutron irradiation on transport properties of thermoelectrics, Appl. Phys. Lett. 111 (4) (2017), 49301.
  12. L.V. Gorynin, V.A. Ignatov, V.V. Rybin, Effects of neutron irradiation on properties of refractory metals, J. Nucl. Mater. 191 (1992) 421-425. https://doi.org/10.1016/0022-3115(92)90799-Q
  13. S.A. Fabritsiev, V.A. Gosudarenkova, V.A. Potapova, et al., Effects of neutron irradiation on physical and mechanical properties of Mo-Re alloys, J. Nucl. Mater. 191 (1992) 426-429.
  14. T. Koyanagi, Y. Katoh, K. Ozawa, et al., Neutron-irradiation creep of silicon carbide materials beyond the initial transient, J. Nucl. Mater. 478 (2016) 97-111. https://doi.org/10.1016/j.jnucmat.2016.06.006
  15. E. Huseynov, A. Garibov, R. Mehdiyeva, et al., Effects of neutron flux, frequency and temperature on the dielectric loss of nano SiO2 particles, Silicon 10 (2) (2018) 191-196. https://doi.org/10.1007/s12633-016-9411-2
  16. E. Huseynov, A. Jazbec, L. Snoj, Temperature vs. impedance dependencies of neutron-irradiated nanocrystalline silicon carbide (3C-SiC), Appl. Phys. A 125 (2019) 91-98. https://doi.org/10.1007/s00339-019-2386-2
  17. E. Huseynov, A. Garibov, R. Mehdiyeva, Temperature and frequency dependence of electric conductivity in nano-grained SiO2 exposed to neutron irradiation, Physica B 450 (2014) 77-83. https://doi.org/10.1016/j.physb.2014.05.063
  18. L.L. Snead, T. Nozawa, Y. Katoh, et al., Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  19. V. Barabash, G. Federici, M. Rodig, et al., Neutron irradiation effects on plasma facing materials, J. Nucl. Mater. 283 (2000) 138-146. https://doi.org/10.1016/S0022-3115(00)00203-8
  20. L.L. Snead, Limits on irradiation-induced thermal conductivity and electrical resistivity in silicon carbide materials, J. Nucl. Mater. 329 (2004) 524-529. https://doi.org/10.1016/j.jnucmat.2004.04.294
  21. E.M. Huseynov, Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC), Appl. Phys. A 124 (2018) 19.
  22. E.M. Huseynov, Dielectric loss of neutron-irradiated nanocrystalline silicon carbide (3C-SiC) as a function of frequency and temperature, Solid State Sci. 84 (2018) 44-50. https://doi.org/10.1016/j.solidstatesciences.2018.08.006
  23. E.M. Huseynov, Neutron irradiation and frequency effects on the electrical conductivity of nanocrystalline silicon carbide (3C-SiC), Phys. Lett. 380 (38) (2016) 3086-3091. https://doi.org/10.1016/j.physleta.2016.07.009
  24. C. Wang, X. Jin, W. Chen, et al., The impact of reactor neutron irradiation on total ionizing dose degradation in MOSFET, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 924 (21) (2019) 245-249. https://doi.org/10.1016/j.nima.2018.08.124
  25. K. Liu, X. Tang, Y. Liu, et al., Enhancing the performance of fully-scaled structure-adjustable 3D thermoelectric devices based on cold-press sintering and molding, Energy 206 (2020), 118096.
  26. M. Maksymuk, B. Dzundza, O. Matkivsky, et al., Development of the high performance thermoelectric unicouple based on Bi2Te3 compounds, J. Power Sources 530 (2022), 231301.
  27. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114. https://doi.org/10.1038/nmat2090
  28. M.S. Dresselhaus, M.Y. Tang, et al., New directions for low-dimensional thermoelectric materials, Adv. Mater. 19 (8) (2007) 1043-1053. https://doi.org/10.1002/adma.200600527
  29. Z. Lin, H. Dang, C. Zhao, et al., The cross-interface energy-filtering effect at organic/inorganic interfaces balances the tradeoff between thermopower and conductivity, Nanoscale 14 (2022) 9419.
  30. M. Bala, R. Meena, S. Gupta, et al., Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films, Nucl. Instrum. Methods Phys. Res. B 379 (2016) 36-41. https://doi.org/10.1016/j.nimb.2016.03.006
  31. F. Zhang, D. Wu, J. He, The roles of grain boundaries in thermoelectric transports, Materials Lab 1 (1) (2022), 220012.
  32. C. Uher, J. Yang, S. Hu, et al., Transport properties of pure and doped MniSn (M= Zr, Hf), Phys. Rev. B 59 (13) (1999) 8615-8621. https://doi.org/10.1103/PhysRevB.59.8615
  33. Y. Li, J. Li, J. Du, et al., Response of p-type and n-type Half-Heusler thermoelectric materials to fast neutron irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 479 (2020) 55-67. https://doi.org/10.1016/j.nimb.2020.06.013
  34. C. Hu, K. Xia, C. Fu, et al., Carrier grain boundary scattering in thermoelectric materials, Energy Environ. Sci. 15 (2022) 1406.
  35. C.M. Barr, E.Y. Chen, J.E. Nathaniel II, et al., Irradiation-induced grain boundary facet motion: in situ observations and atomic-scale mechanisms, Sci. Adv. 8 (23) (2022), eabn0900.
  36. X. Zheng, L. Zhu, Y. Zhou, et al., Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials, Appl. Phys. Lett. 87 (2005), 242101.
  37. E. Macia, A. Garcia-Junceda, M. Serrano, et al., Effect of mechanical alloying on the microstructural evolution of a ferritic ODS steel with (Y-Ti-Al-Zr) addition processed by Spark Plasma Sintering (SPS), Nucl. Eng. Technol. 53 (8) (2021) 2582-2590. https://doi.org/10.1016/j.net.2021.02.002
  38. E. Papynov, A. Belov, O. Shichalin, et al., SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis, Nucl. Eng. Technol. 53 (7) (2021) 2289-2294. https://doi.org/10.1016/j.net.2021.01.024
  39. C. Tang, D. Liang, H. Li, et al., Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites, J. Adv. Ceram. 8 (2019) 209-217. https://doi.org/10.1007/s40145-018-0306-0
  40. J. Ahn, G. Kim, Y. Jung, et al., Fabrication and thermal conductivity of CeO2-Ce3Si2 composite, Nucl. Eng. Technol. 53 (2) (2021) 583-591. https://doi.org/10.1016/j.net.2020.07.016
  41. K. Park, S. Shin, A. Tazebay, et al., Lossless hybridization between photovoltaic and thermoelectric devices, Sci. Rep. 3 (2013) 2123.