DOI QR코드

DOI QR Code

Lactobacillus rhamnosus JY02 Ameliorates Sarcopenia by Anti-Atrophic Effects in a Dexamethasone-Induced Cellular and Murine Model

  • Juyeon Lee (Department of Functional Food and Biotechnology, Jeonju University) ;
  • Minkyoung Kang (Department of Functional Food and Biotechnology, Jeonju University) ;
  • Jiseon Yoo (Department of Functional Food and Biotechnology, Jeonju University) ;
  • Sujeong Lee (Department of Functional Food and Biotechnology, Jeonju University) ;
  • Minji Kang (Department of Functional Food and Biotechnology, Jeonju University) ;
  • Bohyun Yun (Division of Practical Application, Honam National Institute of Biological Resources) ;
  • Jong Nam Kim (Department of Food Science and Nutrition, Dongseo University) ;
  • Hyoungsun Moon (EN Food Contents Inc.) ;
  • Yihyung Chung (Jeonbuk Institute for Food-Bioindustry) ;
  • Sangnam Oh (Department of Functional Food and Biotechnology, Jeonju University)
  • Received : 2023.03.02
  • Accepted : 2023.03.09
  • Published : 2023.07.28

Abstract

Sarcopenia is defined as loss of muscle mass and strength due to aging. Recent studies show that sarcopenia may improve via the gut-muscle axis, suggesting that gut health may affect muscle phenotypes. In this study, we aimed to investigate the ability of Lactobacillus rhamnosus JY02 as a probiotic strain isolated from kimchi to alleviate sarcopenia. L. rhamnosus JY02-conditioned medium (CM) reduced dexamethasone (DEX)-induced myotube diameter atrophy and expression of muscle degradation markers (MuRF1 and atrogin-1) in C2C12 cells. The amelioration of sarcopenia was investigated by measuring body composition (lean mass), hand grip strength, myofibril size (using histological analysis), and mRNA and protein expression of muscle-related factors in a DEX-induced mouse model. The results of these analyses showed that L. rhamnosus JY02 supplementation promoted the production of muscle-enhancement markers (MHC Iβ, MHC IIα, and Myo-D) and reduced both the production of muscle degradation markers and the symptoms of muscle atrophy (loss of lean mass and muscle strength). We also found decreased levels of pro-inflammatory cytokines (IL-6, IFN- γ) and increased levels of anti-inflammatory cytokines (IL-10) in the serum of DEX+JY02-administered mice compared to those in DEX-treated mice. Overall, these results suggest that L. rhamnosus JY02 is a potent probiotic supplement that prevents sarcopenia by suppressing muscle atrophy.

Keywords

Acknowledgement

This work was supported by the Technological Innovation R&D Program (S3084485) funded by the Ministry of SMEs and Startups (MSS, Korea) and the National Research Foundation of Korea Grant, funded by the Korean government (MEST) (2021R1A2C3011051).

References

  1. Ali S, Garcia JM. 2014. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology 60: 294-305. https://doi.org/10.1159/000356760
  2. Wiedmer P, Jung T, Castro JP, Pomatto LCD, Sun PY, Davies KJA, et al. 2021. Sarcopenia - molecular mechanisms and open questions. Ageing Res. Rev. 65: 101200.
  3. Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S, et al. 2021. Mouse models of sarcopenia: classification and evaluation. J. Cachexia Sarcopenia Muscle 12: 538-554. https://doi.org/10.1002/jcsm.12709
  4. Giron M, Thomas M, Dardevet D, Chassard C, Savary-Auzeloux I. 2022. Gut microbes and muscle function: can probiotics make our muscles stronger? J. Cachexia Sarcopenia Muscle 13: 1460-1476. https://doi.org/10.1002/jcsm.12964
  5. Jimenez-Gutierrez GE, Martinez-Gomez LE, Martinez-Armenta C, Pineda C, Martinez-Nava GA, Lopez-Reyes A. 2022. Molecular mechanisms of inflammation in sarcopenia: Diagnosis and therapeutic update. Cells 11: 2359.
  6. Nardone OM, de Sire R, Petito V, Testa A, Villani G, Scaldaferri F, et al. 2021. Inflammatory bowel diseases and sarcopenia: The role of inflammation and gut microbiota in the development of muscle failure. Front. Immunol. 12: 694217.
  7. Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, et al. 2021. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients 13: 3211.
  8. Strasser B, Wolters M, Weyh C, Kruger K, Ticinesi A. 2021. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients 13: 2045.
  9. van Krimpen SJ, Jansen FAC, Ottenheim VL, Belzer C, van der Ende M, van Norren K. 2021. The effects of Pro-, Pre-, and synbiotics on muscle wasting, a systematic review-gut permeability as potential treatment target. Nutrients 13: 1115.
  10. de Vrese M, Schrezenmeir J. 2008. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 111: 1-66.
  11. Jager R, Zaragoza J, Purpura M, Iametti S, Marengo M, Tinsley GM, et al. 2020. Probiotic administration increases amino acid absorption from plant protein: a placebo-controlled, randomized, double-blind, multicenter, crossover study. Probiotics Antimicrob. Proteins 12: 1330-1339. https://doi.org/10.1007/s12602-020-09656-5
  12. Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, et al. 2016. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed. Pharmacother. 83: 536-541. https://doi.org/10.1016/j.biopha.2016.07.001
  13. Azad MAK, Sarker M, Li T, Yin J. 2018. Probiotic species in the modulation of gut microbiota: an overview. BioMed Res. Int. 2018: 9478630.
  14. Pagnini C, Corleto VD, Martorelli M, Lanini C, D'Ambra G, Di Giulio E, et al. 2018. Mucosal adhesion and anti-inflammatory effects of Lactobacillus rhamnosus GG in the human colonic mucosa: A proof-of-concept study. World J. Gastroenterol. 24: 4652-4662. https://doi.org/10.3748/wjg.v24.i41.4652
  15. Slover CM, Danziger L. 2008. Lactobacillus: a review. Clin. Microbiol. Newslett. 30: 23-27. https://doi.org/10.1016/j.clinmicnews.2008.01.006
  16. Li B, Evivie SE, Lu J, Jiao Y, Wang C, Li Z, et al. 2018. Lactobacillus helveticus KLDS1. 8701 alleviates d-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. 9: 6586-6598. https://doi.org/10.1039/C8FO01768A
  17. Lee CC, Liao YC, Lee MC, Lin KJ, Hsu HY, Chiou SY, et al. 2021. Lactobacillus plantarum TWK10 attenuates aging-associated muscle weakness, bone loss, and cognitive impairment by modulating the gut microbiome in mice. Front. Nutr. 8: 708096.
  18. Seon-Kyun K, lt, sup, gt, lt, sup, et al. 2019. Role of probiotics in human gut microbiome-associated diseases. J. Microbiol. Biotechnol. 29: 1335-1340. https://doi.org/10.4014/jmb.1906.06064
  19. Markowiak P, Slizewska K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9: 1021.
  20. Prokopidis K, Giannos P, Kirwan R, Ispoglou T, Galli F, Witard O, et al. 2022. Impact of probiotics on muscle mass, muscle strength, and lean body mass: a systematic review and meta-analysis Jof randomized controlled trials. J. Cachexia Sarcopenia Muscle 14: 30-44.
  21. Lee K, Kim J, Park SD, Shim JJ, Lee JL. 2021. Lactobacillus plantarum HY7715 ameliorates sarcopenia by improving skeletal muscle mass and function in aged Balb/c mice. Int. J. Mol. Sci. 22: 10023.
  22. Chen LH, Chang SS, Chang HY, Wu CH, Pan CH, Chang CC, et al. 2022. Probiotic supplementation attenuates age-related sarcopenia via the gut-muscle axis in SAMP8 mice. J. Cachexia Sarcopenia Muscle 13: 515-531. https://doi.org/10.1002/jcsm.12849
  23. Bindels LB, Beck R, Schakman O, Martin JC, De Backer F, Sohet FM, et al. 2012. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS One 7: e37971.
  24. Mehta J, Rolta R, Mehta BB, Kaushik N, Choi EH, Kaushik NK. 2022. Role of dexamethasone and methylprednisolone corticosteroids in Coronavirus disease 2019 hospitalized patients: a review. Front. Microbiol. 13: 813358.
  25. Noreen S, Maqbool I, Madni A. 2021. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur. J. Pharmacol. 894: 173854.
  26. Jiang R, Wang M, Shi L, Zhou J, Ma R, Feng K, et al. 2019. Panax ginseng total protein facilitates recovery from dexamethasone-induced muscle atrophy through the activation of glucose consumption in C2C12 myotubes. BioMed Res. Int. 2019: 3719643.
  27. Jia H, Yamashita T, Li X, Kato H. 2022. Laurel attenuates dexamethasone-induced skeletal muscle atrophy in vitro and in a rat model. Nutrients 14: 2029.
  28. Baehr LM, Furlow JD, Bodine SC. 2011. Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J. Physiol. 589: 4759-4776. https://doi.org/10.1113/jphysiol.2011.212845
  29. Seo E, Truong C-S, Jun H-S. 2022. Psoralea corylifolia L. seed extract attenuates dexamethasone-induced muscle atrophy in mice by inhibition of oxidative stress and inflammation. J. Ethnopharmacol. 296: 115490.
  30. Wang BYH, Hsiao AWT, Wong N, Chen YF, Lee CW, Lee WYW. 2023. Is dexamethasone-induced muscle atrophy an alternative model for naturally aged sarcopenia model? J. Orthop. Translat. 39: 12-20.
  31. Otsuka Y, Egawa K, Kanzaki N, Izumo T, Rogi T, Shibata H. 2019. Quercetin glycosides prevent dexamethasone-induced muscle atrophy in mice. Biochem. Biophys. Rep. 18: 100618.
  32. Massaccesi L, Goi G, Tringali C, Barassi A, Venerando B, Papini N. 2016. Dexamethasone-induced skeletal muscle atrophy increases O-GlcNAcylation in C2C12 cells. J. Cell Biochem. 117: 1833-1842. https://doi.org/10.1002/jcb.25483
  33. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C, Del Rio D, et al. 2017. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients 9: 1303.
  34. Przewlocka K, Folwarski M, Kazmierczak-Siedlecka K, Skonieczna-Zydecka K, Kaczor JJ. 2020. Gut-muscle axis exists and may affect skeletal muscle adaptation to training. Nutrients 12: 1451.
  35. Chen LH, Chang SS, Chang HY, Wu CH, Pan CH, Chang CC, et al. 2022. Probiotic supplementation attenuates age-related sarcopenia via the gut-muscle axis in SAMP8 mice. J. Cachexia Sarcopenia Muscle 13: 515-531. https://doi.org/10.1002/jcsm.12849
  36. Markowiak-Kopec P, Slizewska K. 2020. The Effect of Probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12: 1107.
  37. Zhao J, Huang Y, Yu X. 2021. A narrative review of gut-muscle axis and sarcopenia: the potential role of gut microbiota. Int. J. Gen. Med. 14: 1263-1273. https://doi.org/10.2147/IJGM.S301141
  38. Gou HZ, Zhang YL, Ren LF, Li ZJ, Zhang L. 2022. How do intestinal probiotics restore the intestinal barrier? Front. Microbiol. 13: 929346.
  39. Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, et al. 2020. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 19: 23.
  40. Indira M, Venkateswarulu TC, Abraham Peele K, Nazneen Bobby M, Krupanidhi S. 2019. Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech. 9: 306.
  41. Park YS, Jung HH, Nam SY. 2000. Quantitative analysis of myosin heavy chain (MHC) mRNA expression in thyropharyngeus muscle and cricopharyngeus muscle in rats. Korean J. Otorhinolaryngol-Head Neck Surg. 43: 300-305.
  42. Konopka AR, Trappe TA, Jemiolo B, Trappe SW, Harber MP. 2011. Myosin heavy chain plasticity in aging skeletal muscle with aerobic exercise training. J. Gerontol. Series A 66A: 835-841. https://doi.org/10.1093/gerona/glr088
  43. Chen L, Chen L, Wan L, Huo Y, Huang J, Li J, et al. 2019. Matrine improves skeletal muscle atrophy by inhibiting E3 ubiquitin ligases and activating the Akt/mTOR/FoxO3α signaling pathway in C2C12 myotubes and mice. Oncol. Rep. 42: 479-494. https://doi.org/10.3892/or.2019.7205
  44. Wijaya YT, Setiawan T, Sari IN, Nah SY, Kwon HY. 2021. Amelioration of muscle wasting by gintonin in cancer cachexia. Neoplasia (New York, N.Y.). 23: 1307-1317. https://doi.org/10.1016/j.neo.2021.11.008
  45. Parry T, Quintana M, Hill J, Willis M. 2015. Muscle-specific ubiquitin ligase MuRF1 regulates myocardial autophagic flux in vivo. 29: 148.148. https://doi.org/10.1096/fasebj.29.1_supplement.148.8
  46. Kitajima Y, Yoshioka K, Suzuki N. 2020. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J. Physiol. Sci. 70: 40.
  47. Bindels LB, Beck R, Schakman O, Martin JC, De Backer F, Sohet FM, et al. 2012. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS One 7: e37971.
  48. Bodine SC, Baehr LM. 2014. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307: E469-484. https://doi.org/10.1152/ajpendo.00204.2014
  49. Gumucio JP, Mendias CL. 2013. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43: 12-21. https://doi.org/10.1007/s12020-012-9751-7
  50. Song YJ, Choi JH, Lee H. 2015. Setdb1 is required for myogenic differentiation of C2C12 myoblast cells via maintenance of MyoD expression. Mol. Cells 38: 362-372. https://doi.org/10.14348/molcells.2015.2291
  51. Lin M, Zhou S, Sakamoto K. 2020. Alpha mangostin promotes myogenic differentiation of C2C12 mouse myoblast cells. Biochem. Biophys. Res. Commun. 528: 193-198. https://doi.org/10.1016/j.bbrc.2020.04.128
  52. Liu XH, de Gasperi R, Bauman W, Cardozo C. 2018. Nandrolone-induced nuclear accumulation of MyoD protein is mediated by Numb, a Notch inhibitor, in C2C12 myoblasts. Physiol. Rep. 6: e13520.
  53. Luo W, Li E, Nie Q, Zhang X. 2015. Myomaker, regulated by MYOD, MYOG and miR-140-3p, promotes chicken myoblast fusion. Int. J. Mol. Sci. 16: 26186-26201. https://doi.org/10.3390/ijms161125946
  54. Hong Y, Lee JH, Jeong KW, Choi CS, Jun HS. 2019. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J. Cachexia Sarcopenia Muscle 10: 903-918. https://doi.org/10.1002/jcsm.12434
  55. Lee MC, Hsu YJ, Ho HH, Kuo YW, Lin WY, Tsai SY, et al. 2021. Effectiveness of human-origin Lactobacillus plantarum PL-02 in improving muscle mass, exercise performance and anti-fatigue. 11: 19469.
  56. Chen L, Li H, Chen Y, Yang YJN. 2020. Probiotic Lactobacillus rhamnosus GG reduces mortality of septic mice by modulating gut microbiota composition and metabolic profiles. 78: 110863. https://doi.org/10.1016/j.nut.2020.110863
  57. Pomeroy E, Macintosh A, Wells JCK, Cole TJ, Stock JT. 2018. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: implications for estimating body mass and physique from the skeleton. Am. J. Phys. Anthr. 166: 56-69. https://doi.org/10.1002/ajpa.23398
  58. Klover P, Chen W, Zhu BM, Hennighausen L. 2009. Skeletal muscle growth and fiber composition in mice are regulated through the transcription factors STAT5a/b: linking growth hormone to the androgen receptor. FASEB J. Official Publication Federation Am. Soc. Exper. Biol. 23: 3140-3148. https://doi.org/10.1096/fj.08-128215
  59. Kim S, Kim K, Park J, Jun W. 2021. Curcuma longa L. Water extract improves dexamethasone-induced sarcopenia by modulating the muscle-related gene and oxidative stress in mice. Antioxidants 10: 1000.
  60. Lee SY. 2021. Handgrip strength: an irreplaceable indicator of muscle function. Ann. Rehab. Med. 45: 167-169. https://doi.org/10.5535/arm.21106
  61. Savary I, Debras E, Dardevet D, Sornet C, Capitan P, Prugnaud J, et al. 1998. Effect of glucocorticoid excess on skeletal muscle and heart protein synthesis in adult and old rats. Br. J. Nutr. 79: 297-304. https://doi.org/10.1079/BJN19980047
  62. Wells L, Edwards KA, Bernstein SI. 1996. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. Embo J. 15: 4454-4459. https://doi.org/10.1002/j.1460-2075.1996.tb00822.x
  63. Lee H, Kim YI, Nirmala FS, Jeong HY, Seo HD, Ha TY, et al. 2021. Chrysanthemum zawadskil herbich attenuates dexamethasone-induced muscle atrophy through the regulation of proteostasis and mitochondrial function. Biomed. Pharmacother. 136: 111226.
  64. Hata J, Nakashima D, Tsuji O, Fujiyoshi K, Yasutake K, Sera Y, et al. 2019. Noninvasive technique to evaluate the muscle fiber characteristics using q-space imaging. PLoS One 14: e0214805.
  65. Ramon Rios, Isabel Carneiro, Victor M Arce, Jesus Devesa. 2002. Myostatin is an inhibitor of myogenic differentiation. Am. J. Physiol. Cell Physiol. 282: C993-C99966. https://doi.org/10.1152/ajpcell.00372.2001
  66. White TA, LeBrasseur NK. 2014. Myostatin and Sarcopenia: opportunities and challenges - a mini-review. Gerontology 60: 289-293. https://doi.org/10.1159/000356740
  67. Dong Y, Pan JS, Zhang L. 2013. Myostatin suppression of akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One 8: e58554.
  68. Pedersen M, Bruunsgaard H, Weis N, Hendel HW, Andreassen BU, Eldrup E, et al. 2003. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech. Ageing. Dev. 124: 495-502. https://doi.org/10.1016/S0047-6374(03)00027-7
  69. Rong YD, Bian AL, Hu HY, Ma Y, Zhou XZ. 2018. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 18: 308.
  70. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, et al. 2002. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J. Gerontol. A Biol. Sci. Med. Sci. 57: M326-332. https://doi.org/10.1093/gerona/57.5.M326