DOI QR코드

DOI QR Code

Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy

  • Xiaofeng Dai (The First Affiliated Hospital of Xi'an Jiaotong University) ;
  • Jiale Wu (The First Affiliated Hospital of Xi'an Jiaotong University) ;
  • Lianghui Lu (The First Affiliated Hospital of Xi'an Jiaotong University) ;
  • Yuyu Chen (The First Affiliated Hospital of Xi'an Jiaotong University)
  • Received : 2023.02.14
  • Accepted : 2023.04.25
  • Published : 2023.09.01

Abstract

Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 81972789) and Fundamental Research Funds for the Central Universities (Grant No. JUSRP22011). The funding bodies played no role in the design of the study; collection, analysis, and interpretation of data; or in manuscript preparation.

References

  1. Adhikari, M., Adhikari, B., Ghimire, B., Baboota, S. and Choi, E. H. (2020) Cold atmospheric plasma and silymarin nanoemulsion activate autophagy in human melanoma cells. Int. J. Mol. Sci. 21, 1939.
  2. Adhikari, M., Kaushik, N., Ghimire, B., Adhikari, B., Baboota, S., Al-Khedhairy, A. A., Wahab, R., Lee, S.-J., Kaushik, N. K. and Choi, E. H. (2019) Cold atmospheric plasma and silymarin nanoemulsion synergistically inhibits human melanoma tumorigenesis via targeting HGF/c-MET downstream pathway. Cell Commun. Signal. 17, 52.
  3. Afrasiabi, M., Tahmasebi, G., Eslami, E., Seydi, E. and Pourahmad, J. (2022) Cold atmospheric plasma versus cisplatin against oral squamous cell carcinoma: a mitochondrial targeting study. Iran. J. Pharm. Res. 21, e124106.
  4. Aggelopoulos, C. A., Christodoulou, A.-M., Tachliabouri, M., Meropoulis, S., Christopoulou, M.-E., Karalis, T. T., Chatzopoulos, A. and Skandalis, S. S. (2022) Cold atmospheric plasma attenuates breast cancer cell growth through regulation of cell microenvironment effectors. Front. Oncol. 11, 826865.
  5. Akter, M., Jangra, A., Choi, S. A., Choi, E. H. and Han, I. (2020) Nonthermal atmospheric pressure bio-compatible plasma stimulates apoptosis via p38/MAPK mechanism in U87 malignant glioblastoma. Cancers (Basel) 12, 245.
  6. Alimohammadi, M., Golpur, M., Sohbatzadeh, F., Hadavi, S., Bekeschus, S., Niaki, H. A., Valadan, R. and Rafiei, A. (2020) Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo. Biomolecules 10, 1011.
  7. Almeida-Ferreira, C., Silva-Teixeira, R., Goncalves, A. C., Marto, C. M., Sarmento-Ribeiro, A. B., Caramelo, F., Botelho, M. F. and Laranjo, M. (2022) Cold atmospheric plasma apoptotic and oxidative effects on MCF7 and HCC1806 human breast cancer cells. Int. J. Mol. Sci. 23, 1698.
  8. Almeida, N. D., Klein, A. L., Hogan, E. A., Terhaar, S. J., Kedda, J., Uppal, P., Sack, K., Keidar, M. and Sherman, J. H. (2019) Cold atmospheric plasma as an adjunct to immunotherapy for glioblastoma multiforme. World Neurosurg. 130, 369-376. https://doi.org/10.1016/j.wneu.2019.06.209
  9. Ando, T., Suzuki-Karasaki, M., Suzuki-Karasaki, M., Ichikawa, J., Ochiai, T., Yoshida, Y., Haro, H. and Suzuki-Karasaki, Y. (2021) Combined anticancer effect of plasma-activated infusion and salinomycin by targeting autophagy and mitochondrial morphology. Front. Oncol. 11, 593127.
  10. Ara, E. S., Noghreiyan, A. V. and Sazgarnia, A. (2021) Evaluation of photodynamic effect of Indocyanine green (ICG) on the colon and glioblastoma cancer cell lines pretreated by cold atmospheric plasma. Photodiagnosis Photodyn. Ther. 35, 102408.
  11. Arndt, S., Fadil, F., Dettmer, K., Unger, P., Boskovic, M., Samol, C., Bosserhoff, A.-K., Zimmermann, J. L., Gruber, M., Gronwald, W. and Karrer, S. (2021) Cold atmospheric plasma changes the amino acid composition of solutions and influences the anti-tumor effect on melanoma cells. Int. J. Mol. Sci. 22, 7886.
  12. Arndt, S., Unger, P., Wacker, E., Shimizu, T., Heinlin, J., Li, Y. F., Thomas, H. M., Morfill, G. E., Zimmermann, J. L., Bosserhoff, A. K. and Karrer, S. (2013a) Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One 8, e79325.
  13. Arndt, S., Wacker, E., Li, Y.-F., Shimizu, T., Thomas, H. M., Morfill, G. E., Karrer, S., Zimmermann, J. L. and Bosserhoff, A.-K. (2013b) Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp. Dermatol. 22, 284-289. https://doi.org/10.1111/exd.12127
  14. Azzariti, A., Iacobazzi, R. M., Di Fonte, R., Porcelli, L., Gristina, R., Favia, P., Fracassi, F., Trizio, I., Silvestris, N., Guida, G., Tommasi, S. and Sardella, E. (2019) Plasma-activated medium triggers cell death and the presentation of immune activating danger signals in melanoma and pancreatic cancer cells. Sci. Rep. 9, 4099.
  15. Bauer, G., Sersenova, D., Graves, D. B. and Machala, Z. (2019) Cold atmospheric plasma and plasma-activated medium trigger RONS-based tumor cell apoptosis. Sci. Rep. 9, 14210.
  16. Bavelloni, A., Piazzi, M., Raffini, M., Faenza, I. and Blalock, W. L. (2015) Prohibitin 2: at a communications crossroads. IUBMB Life 67, 239-254. https://doi.org/10.1002/iub.1366
  17. Bekeschus, S., Rodder, K., Fregin, B., Otto, O., Lippert, M., Weltmann, K. D., Wende, K., Schmidt, A. and Gandhirajan, R. K. (2017) Toxicity and immunogenicity in murine melanoma following exposure to physical plasma-derived oxidants. Oxid. Med. Cell. Longev. 2017, 4396467.
  18. Bekeschus, S., Wende, K., Hefny, M. M., Rodder, K., Jablonowski, H., Schmidt, A., Woedtke, T. v., Weltmann, K.-D. and Benedikt, J. (2017) Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Sci. Rep. 7, 2791.
  19. Bernhardt, T., Semmler, M. L., Schafer, M., Bekeschus, S., Emmert, S. and Boeckmann, L. (2019) Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid. Med. Cell. Longev. 2019, 3873928.
  20. Binenbaum, Y., Ben-David, G., Gil, Z., Slutsker, Y. Z., Ryzhkov, M. A., Felsteiner, J., Krasik, Y. E. and Cohen, J. T. (2017) Cold atmospheric plasma, created at the tip of an elongated flexible capillary using low electric current, can slow the progression of melanoma. PLoS One 12, e0169457.
  21. Breathnach, R., McDonnell, K. A., Chebbi, A., Callanan, J. J. and Dowling, D. P. (2018) Evaluation of the effectiveness of kINPen Med plasma jet and bioactive agent therapy in a rat model of wound healing. Biointerphases 13, 051002.
  22. Bunz, O., Mese, K., Funk, C., Wulf, M., Bailer, S. M., Piwowarczyk, A. and Ehrhardt, A. (2020) Cold atmospheric plasma as antiviral therapy - effect on human herpes simplex virus type 1. J. Gen. Virol. 101, 208-215. https://doi.org/10.1099/jgv.0.001382
  23. Busco, G., Robert, E., Chettouh-Hammas, N., Pouvesle, J. M. and Grillon, C. (2020) The emerging potential of cold atmospheric plasma in skin biology. Free Radic. Biol. Med. 161, 290-304. https://doi.org/10.1016/j.freeradbiomed.2020.10.004
  24. Canady, J. (2020) Businesswire: Canady Helios Cold Plasma Scalpel Successfully Used by Chaim Sheba Medical Center Surgeons to Remove Inoperable Retroperitoneal Cancer. US Medical Innovations, LLC. Available from: https://www.businesswire.com/news/home/20200129005667/en/Canady-Helios-Cold-Plasma-ScalpelSuccessfully-Chaim/ [accessed 2022 Nov 25].
  25. Chang, J. W., Kang, S. U., Shin, Y. S., Seo, S. J., Kim, Y. S., Yang, S. S., Lee, J.-S., Moon, E., Lee, K. and Kim, C.-H. (2015) Combination of NTP with cetuximab inhibited invasion/migration of cetuximab-resistant OSCC cells: involvement of NF-κB signaling. Sci. Rep. 5, 18208.
  26. Chauvin, J., Judee, F., Merbahi, N. and Vicendo, P. (2018) Effects of plasma activated medium on head and neck FaDu cancerous cells: comparison of 3D and 2D response. Anticancer Agents Med. Chem. 18, 776-783. https://doi.org/10.2174/1871520617666170801111055
  27. Chen, G., Chen, Z., Wang, Z., Obenchain, R., Wen, D., Li, H., Wirz, R. E. and Gu, Z. (2021) Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. Sci. Adv. 7, eabg5686.
  28. Chen, Q., Sun, T., Wang, G., Zhang, M., Zhu, Y., Shi, X. and Ding, Z. (2022) Cuproptosis-related LncRNA signature for predicting prognosis of hepatocellular carcinoma: a comprehensive analysis. Dis. Markers 2022, 3265212.
  29. Chen, Z., Simonyan, H., Cheng, X., Gjika, E., Lin, L., Canady, J., Sherman, J. H., Young, C. and Keidar, M. (2017) A novel micro cold atmospheric plasma device for glioblastoma both in vitro and in vivo. Cancers (Basel) 9, 61.
  30. Cheng, X., Murphy, W., Recek, N., Yan, D., Cvelbar, U., Vesel, A., Mozetic, M., Canady, J., Keidar, M. and Sherman, J. H. (2014a) Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J. Phys. D: Appl. Phys. 47, 335402.
  31. Cheng, X., Rajjoub, K., Shashurin, A., Yan, D., Sherman, J. H., Bian, K., Murad, F. and Keidar, M. (2017) Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field. Bioelectromagnetics 38, 53-62. https://doi.org/10.1002/bem.22014
  32. Cheng, X., Sherman, J., Murphy, W., Ratovitski, E., Canady, J. and Keidar, M. (2014b) The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One 9, e98652.
  33. Choi, J.-S., Kim, J., Hong, Y.-J., Bae, W.-Y., Choi, E. H., Jeong, J.-W. and Park, H.-K. (2017) Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed. Opt. Express 8, 2649-2659. https://doi.org/10.1364/BOE.8.002649
  34. Conway, G. E., Casey, A., Milosavljevic, V., Liu, Y., Howe, O., Cullen, P. J. and Curtin, J. F. (2016) Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br. J. Cancer 114, 435-443. https://doi.org/10.1038/bjc.2016.12
  35. Conway, G. E., He, Z., Hutanu, A. L., Cribaro, G. P., Manaloto, E., Casey, A., Traynor, D., Milosavljevic, V., Howe, O., Barcia, C., Murray, J. T., Cullen, P. J. and Curtin, J. F. (2019) Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Sci. Rep. 9, 12891.
  36. Corbella, C., Portal, S., Lin, L. and Keidar, M. (2021) Non-thermal plasma multi-jet platform based on a flexible matrix. Rev. Sci. Instrum. 92, 083505.
  37. Dai, X., Bazaka, K., Richard, D. J., Thompson, E. R. W. and Ostrikov, K. K. (2018) The emerging role of gas plasma in oncotherapy. Trends Biotechnol. 36, 1183-1198. https://doi.org/10.1016/j.tibtech.2018.06.010
  38. Dai, X., Bazaka, K., Thompson, E. W. and Ostrikov, K. K. (2020a) Cold atmospheric plasma: a promising controller of cancer cell states. Cancers (Basel) 12, 3360.
  39. Dai, X., Cai, D., Wang, P., Nan, N., Yu, L., Zhang, Z., Zhou, R., Hua, D., Zhang, J., Ostrikov, K. K. and Thompson, E. (2022) Cold atmospheric plasmas target breast cancer stemness via modulating AQP3-19Y mediated AQP3-5K and FOXO1 K48-ubiquitination. Int. J. Biol. Sci. 18, 3544-3561. https://doi.org/10.7150/ijbs.72296
  40. Dai, X., Luo, Y., Xu, Y. and Zhang, J. (2019) Key indexes and the emerging tool for tumor microenvironment editing. Am. J. Cancer Res. 9, 1027-1042.
  41. Dai, X., Shen, L. and Zhang, J. (2023) Cold atmospheric plasma: redox homeostasis to treat cancers? Trends Biotechnol. 41, 15-18. https://doi.org/10.1016/j.tibtech.2022.07.007
  42. Dai, X., Wang, D. and Zhang, J. (2021) Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 26, 385-414. https://doi.org/10.1007/s10495-021-01682-0
  43. Dai, X., Xiang, L., Li, T. and Bai, Z. (2016) Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J. Cancer 7, 1281-1294. https://doi.org/10.7150/jca.13141
  44. Dai, X. F., Zhang, Z. F., Zhang, J. Y. and Ostrikov, K. K. (2020b) Dosing: the key to precision plasma oncology. Plasma Processes Polym. 17, 1900178.
  45. Davalli, P., Marverti, G., Lauriola, A. and D'Arca, D. (2018) Targeting oxidatively induced DNA damage response in cancer: opportunities for novel cancer therapies. Oxid. Med.Cell. Longev. 2018, 2389523.
  46. Dezest, M., Chavatte, L., Bourdens, M., Quinton, D., Camus, M., Garrigues, L., Descargues, P., Arbault, S., Burlet-Schiltz, O., Casteilla, L., Clement, F., Planat, V. and Bulteau, A. L. (2017) Mechanistic insights into the impact of Cold Atmospheric Pressure Plasma on human epithelial cell lines. Sci. Rep. 7, 41163.
  47. Duchesne, C., Frescaline, N., Blaise, O., Lataillade, J. J., Banzet, S., Dussurget, O. and Rousseau, A. (2021) Cold atmospheric plasma promotes killing of Staphylococcus aureus by macrophages. mSphere 6, e0021721.
  48. Ermakov, A. M., Ermakova, O. N., Afanasyeva, V. A. and Popov, A. L. (2021) Dose-dependent effects of cold atmospheric argon plasma on the mesenchymal stem and osteosarcoma cells in vitro. Int. J. Mol. Sci. 22, 6797.
  49. Estarabadi, H., Atyabi, S. A., Tavakkoli, S., Noormohammadi, Z., Gholami, M. R., Ghiaseddin, A. and Irani, S. (2021) Cold atmospheric plasma induced genotoxicity and cytotoxicity in esophageal cancer cells. Mol. Biol. Rep. 48, 1323-1333. https://doi.org/10.1007/s11033-021-06178-3
  50. Eto, K., Ishinada, C., Suemoto, T., Hyakutake, K., Tanaka, H. and Hori, M. (2021) Differential data on the responsiveness of multiple cell types to cell death induced by non-thermal atmospheric pressure plasma-activated solutions. Data Brief 36, 106995.
  51. Feil, L., Koch, A., Utz, R., Ackermann, M., Barz, J., Stope, M., Kramer, B., Wallwiener, D., Brucker, S. Y. and Weiss, M. (2020) Cancerselective treatment of cancerous and non-cancerous human cervical cell models by a non-thermally operated electrosurgical argon plasma device. Cancers (Basel) 12, 1037.
  52. Friedman, P. C., Miller, V., Fridman, G., Lin, A. and Fridman, A. (2017) Successful treatment of actinic keratoses using nonthermal atmospheric pressure plasma: a case series. J. Am. Acad. Dermatol. 76, 349-350. https://doi.org/10.1016/j.jaad.2016.09.004
  53. Gangemi, S., Petrarca, C., Tonacci, A., Di Gioacchino, M., Musolino, C. and Allegra, A. (2022) Cold atmospheric plasma targeting hematological malignancies: potentials and problems of clinical translation. Antioxidants (Basel) 11, 1592.
  54. Gay-Mimbrera, J., Garcia, M. C., Isla-Tejera, B., Rodero-Serrano, A., Garcia-Nieto, A. V. and Ruano, J. (2016) Clinical and biological principles of cold atmospheric plasma application in skin cancer. Adv. Ther. 33, 894-909. https://doi.org/10.1007/s12325-016-0338-1
  55. Gelbrich, N., Miebach, L., Berner, J., Freund, E., Saadati, F., Schmidt, A., Stope, M., Zimmermann, U., Burchardt, M. and Bekeschus, S. (2023) Medical gas plasma augments bladder cancer cell toxicity in preclinical models and patient-derived tumor tissues. J. Adv. Res. 47, 209-223. https://doi.org/10.1016/j.jare.2022.07.012
  56. Gjika, E., Pal-Ghosh, S., Kirschner, M. E., Lin, L., Sherman, J. H., Stepp, M. A. and Keidar, M. (2020) Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci. Rep. 10, 16495.
  57. Golpour, M., Alimohammadi, M., Sohbatzadeh, F., Fattahi, S., Bekeschus, S. and Rafiei, A. (2022) Cold atmospheric pressure plasma treatment combined with starvation increases autophagy and apoptosis in melanoma in vitro and in vivo. Exp. Dermatol. 31, 1016-1028. https://doi.org/10.1111/exd.14544
  58. Golubitskaya, E. A., Troitskaya, O. S., Yelak, E. V., Gugin, P. P., Richter, V. A., Schweigert, I. V., Zakrevsky, D. E. and Koval, O. A. (2019) Cold physical plasma decreases the viability of lung adenocarcinoma cells. Acta Naturae 11, 16-19. https://doi.org/10.32607/20758251-2019-11-3-16-19
  59. Gorrini, C., Harris, I. S. and Mak, T. W. (2013) Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947. https://doi.org/10.1038/nrd4002
  60. Griseti, E., Kolosnjaj-Tabi, J., Gibot, L., Fourquaux, I., Rols, M.-P., Yousfi, M., Merbahi, N. and Golzio, M. (2019) Pulsed electric field treatment enhances the cytotoxicity of plasma-activated liquids in a three-dimensional human colorectal cancer cell model. Sci. Rep. 9, 7583.
  61. Griseti, E., Merbahi, N. and Golzio, M. (2020) Anti-cancer potential of two plasma-activated liquids: implication of long-lived reactive oxygen and nitrogen species. Cancers (Basel) 12, 721.
  62. Guerrero-Preston, R., Ogawa, T., Uemura, M., Shumulinsky, G., Valle, B. L., Pirini, F., Ravi, R., Sidransky, D., Keidar, M. and Trink, B. (2014) Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int. J. Mol. Med. 34, 941-946. https://doi.org/10.3892/ijmm.2014.1849
  63. Gumbel, D., Gelbrich, N., Napp, M., Daeschlein, G., Kramer, A., Sckell, A., Burchardt, M., Ekkernkamp, A. and Stope, M. B. (2017a) Peroxiredoxin expression of human osteosarcoma cells is influenced by cold atmospheric plasma treatment. Anticancer Res. 37, 1031-1038. https://doi.org/10.21873/anticanres.11413
  64. Gumbel, D., Gelbrich, N., Weiss, M., Napp, M., Daeschlein, G., Sckell, A., Ender, S. A., Kramer, A., Burchardt, M., Ekkernkamp, A. and Stope, M. B. (2016) New treatment options for osteosarcoma - inactivation of osteosarcoma cells by cold atmospheric plasma. Anticancer Res. 36, 5915-5922. https://doi.org/10.21873/anticanres.11178
  65. Gumbel, D., Suchy, B., Wien, L., Gelbrich, N., Napp, M., Kramer, A., Ekkernkamp, A., Daeschlein, G. and Stope, M. B. (2017b) Comparison of cold atmospheric plasma devices' efficacy on osteosarcoma and fibroblastic in vitro cell models. Anticancer Res. 37, 5407-5414. https://doi.org/10.21873/anticanres.11968
  66. Gunes, S., He, Z., Tsoukou, E., Ng, S. W., Boehm, D., Pinheiro Lopes, B., Bourke, P., Malone, R., Cullen, P. J., Wang, W. and Curtin, J. (2022) Cell death induced in glioblastoma cells by plasma-activated-liquids (PAL) is primarily mediated by membrane lipid peroxidation and not ROS influx. PLoS One 17, e0274524.
  67. Guo, B., Li, W., Liu, Y., Xu, D., Liu, Z. and Huang, C. (2022) Aberrant expressional profiling of small RNA by cold atmospheric plasma treatment in human chronic myeloid leukemia cells. Front. Genet. 12, 809658.
  68. Guo, B., Pomicter, A. D., Li, F., Bhatt, S., Chen, C., Li, W., Qi, M., Huang, C., Deininger, M. W., Kong, M. G. and Chen, H.-L. (2021) Trident cold atmospheric plasma blocks three cancer survival pathways to overcome therapy resistance. Proc. Natl. Acad. Sci. U. S. A. 118, e2107220118.
  69. Ha, J.-H. and Kim, Y.-J. (2021) Photodynamic and cold atmospheric plasma combination therapy using polymeric nanoparticles for the synergistic treatment of cervical cancer. Int. J. Mol. Sci. 22, 1172.
  70. Haertel, B., von Woedtke, T., Weltmann, K. D. and Lindequist, U. (2014) Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. (Seoul) 22, 477-490. https://doi.org/10.4062/biomolther.2014.105
  71. Hamouda, I., Labay, C., Cvelbar, U., Ginebra, M.-P. and Canal, C. (2021) Selectivity of direct plasma treatment and plasma-conditioned media in bone cancer cell lines. Sci. Rep. 11, 17521.
  72. Han, I., Choi, S. A., Kim, S. I., Choi, E. H., Lee, Y. J. and Kim, Y. (2021) Improvement of cell growth of uterosacral ligament fibroblast derived from pelvic organ prolapse patients by cold atmospheric plasma treated liquid. Cells 10, 2728.
  73. Hara, H., Taniguchi, M., Kobayashi, M., Kamiya, T. and Adachi, T. (2015) Plasma-activated medium-induced intracellular zinc liberation causes death of SH-SY5Y cells. Arch Biochem. Biophys. 584, 51-60. https://doi.org/10.1016/j.abb.2015.08.014
  74. Haralambiev, L., Nitsch, A., Einenkel, R., Muzzio, D. O., Gelbrich, N., Burchardt, M., Zygmunt, M., Ekkernkamp, A., Stope, M. B. and Gumbel, D. (2020a) The effect of cold atmospheric plasma on the membrane permeability of human osteosarcoma cells. Anticancer Res. 40, 841-846. https://doi.org/10.21873/anticanres.14016
  75. Haralambiev, L., Nitsch, A., Jacoby, J. M., Strakeljahn, S., Bekeschus, S., Mustea, A., Ekkernkamp, A. and Stope, M. B. (2020b) Cold atmospheric plasma treatment of chondrosarcoma cells affects proliferation and cell membrane permeability. Int. J. Mol. Sci. 21, 2291.
  76. Haralambiev, L., Wien, L., Gelbrich, N., Kramer, A., Mustea, A., Burchardt, M., Ekkernkamp, A., Stope, M. B. and Gumbel, D. (2019) Effects of cold atmospheric plasma on the expression of chemokines, growth factors, TNF superfamily members, interleukins, and cytokines in human osteosarcoma cells. Anticancer Res. 39, 151-157. https://doi.org/10.21873/anticanres.13091
  77. Haralambiev, L., Wien, L., Gelbrich, N., Lange, J., Bakir, S., Kramer, A., Burchardt, M., Ekkernkamp, A., Gumbel, D. and Stope, M. B. (2020c) Cold atmospheric plasma inhibits the growth of osteosarcoma cells by inducing apoptosis, independent of the device used. Oncol. Lett. 19, 283-290. https://doi.org/10.3892/ol.2019.11115
  78. Hattori, N., Yamada, S., Torii, K., Takeda, S., Nakamura, K., Tanaka, H., Kajiyama, H., Kanda, M., Fujii, T., Nakayama, G., Sugimoto, H., Koike, M., Nomoto, S., Fujiwara, M., Mizuno, M., Hori, M. and Kodera, Y. (2015) Effectiveness of plasma treatment on pancreatic cancer cells. Int. J. Oncol. 47, 1655-1662. https://doi.org/10.3892/ijo.2015.3149
  79. He, Z., Charleton, C., Devine, R. W., Kelada, M., Walsh, J. M. D., Conway, G. E., Gunes, S., Mondala, J. R. M., Tian, F., Tiwari, B., Kinsella, G. K., Malone, R., O'Shea, D., Devereux, M., Wang, W., Cullen, P. J., Stephens, J. C. and Curtin, J. F. (2021) Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-Generating cold atmospheric plasma. Eur. J. Med. Chem. 224, 113736.
  80. He, Z., Liu, K., Manaloto, E., Casey, A., Cribaro, G. P., Byrne, H. J., Tian, F., Barcia, C., Conway, G. E., Cullen, P. J. and Curtin, J. F. (2018) Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death. Sci. Rep. 8, 5298.
  81. He, Z., Liu, K., Scally, L., Manaloto, E., Gunes, S., Ng, S. W., Maher, M., Tiwari, B., Byrne, H. J., Bourke, P., Tian, F., Cullen, P. J. and Curtin, J. F. (2020) Cold atmospheric plasma stimulates clathrin-dependent endocytosis to repair oxidised membrane and enhance uptake of nanomaterial in glioblastoma multiforme cells. Sci. Rep. 10, 6985.
  82. Hirst, A. M., Simms, M. S., Mann, V. M., Maitland, N. J., O'Connell, D. and Frame, F. M. (2015) Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br. J. Cancer 112, 1536-1545. https://doi.org/10.1038/bjc.2015.113
  83. Hoffmann, C., Berganza, C. and Zhang, J. (2013) Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med. Gas Res. 3, 21.
  84. Hong, Y. F., Kang, J. G., Lee, H. Y., Uhm, H. S., Moon, E. and Park, Y. H. (2009) Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett. Appl. Microbiol. 48, 33-37. https://doi.org/10.1111/j.1472-765X.2008.02480.x
  85. Hua, D., Cai, D., Ning, M., Yu, L., Zhang, Z., Han, P. and Dai, X. (2021) Cold atmospheric plasma selectively induces G0/G1 cell cycle arrest and apoptosis in AR-independent prostate cancer cells. J. Cancer 12, 5977-5986. https://doi.org/10.7150/jca.54528
  86. Huang, J., Zhang, J., Wang, F., Zhang, B. and Tang, X. (2022) Comprehensive analysis of cuproptosis-related genes in immune infiltration and diagnosis in ulcerative colitis. Front. Immunol. 13, 1008146.
  87. Irani, S., Shahmirani, Z., Atyabi, S. M. and Mirpoor, S. (2015) Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles. Arch. Med. Sci. 11, 1286-1295.
  88. Isbary, G., Morfill, G., Schmidt, H. U., Georgi, M., Ramrath, K., Heinlin, J., Karrer, S., Landthaler, M., Shimizu, T., Steffes, B., Bunk, W., Monetti, R., Zimmermann, J. L., Pompl, R. and Stolz, W. (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 163, 78-82. https://doi.org/10.1111/j.1365-2133.2010.09744.x
  89. Isbary, G., Shimizu, T., Li, Y. F., Stolz, W., Thomas, H. M., Morfill, G. E. and Zimmermann, J. L. (2013) Cold atmospheric plasma devices for medical issues. Expert Rev. Med. Devices 10, 367-377. https://doi.org/10.1586/erd.13.4
  90. Ishaq, M., Evans, M. D. M. and Ostrikov, K. K. (2014) Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochim. Biophys. Acta 1843, 2827-2837. https://doi.org/10.1016/j.bbamcr.2014.08.011
  91. Jacoby, J. M., Strakeljahn, S., Nitsch, A., Bekeschus, S., Hinz, P., Mustea, A., Ekkernkamp, A., Tzvetkov, M. V., Haralambiev, L. and Stope, M. B. (2020) An innovative therapeutic option for the treatment of skeletal sarcomas: elimination of osteo- and Ewing's sarcoma cells using physical gas plasma. Int. J. Mol. Sci. 21, 4460.
  92. Jalili, A., Irani, S. and Mirfakhraie, R. (2016) Combination of cold atmospheric plasma and iron nanoparticles in breast cancer: gene expression and apoptosis study. Onco Targets Ther. 9, 5911-5917. https://doi.org/10.2147/OTT.S95644
  93. Ji, H. W., Kim, H., Kim, H. W., Yun, S. H., Park, J. E., Choi, E. H. and Kim, S. J. (2020) Genome-wide comparison of the target genes of the reactive oxygen species and non-reactive oxygen species constituents of cold atmospheric plasma in cancer cells. Cancers (Basel) 12, 2640.
  94. Jo, A., Bae, J. H., Yoon, Y. J., Chung, T. H., Lee, E.-W., Kim, Y.-H., Joh, H. M. and Chung, J. W. (2022a) Plasma-activated medium induces ferroptosis by depleting FSP1 in human lung cancer cells. Cell Death Dis. 13, 212.
  95. Jo, A., Joh, H. M., Bae, J. H., Kim, S. J., Chung, T. H. and Chung, J. W. (2022b) Plasma activated medium prepared by a bipolar microsecond-pulsed atmospheric pressure plasma jet array induces mitochondria-mediated apoptosis in human cervical cancer cells. PLoS One 17, e0272805.
  96. Joerger, A. C. and Fersht, A. R. (2008) Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557-582. https://doi.org/10.1146/annurev.biochem.77.060806.091238
  97. Jones, O., Cheng, X., Murthy, S. R. K., Ly, L., Zhuang, T., Basadonna, G., Keidar, M. and Canady, J. (2021) The synergistic effect of Canady Helios cold atmospheric plasma and a FOLFIRINOX regimen for the treatment of cholangiocarcinoma in vitro. Sci. Rep. 11, 8967.
  98. Kang, S. U., Cho, J. H., Chang, J. W., Shin, Y. S., Kim, K. I., Park, J. K., Yang, S. S., Lee, J. S., Moon, E., Lee, K. and Kim, C. H. (2014) Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis. 5, e1056.
  99. Kaushik, N., Lee, S. J., Choi, T. G., Baik, K. Y., Uhm, H. S., Kim, C. H., Kaushik, N. K. and Choi, E. H. (2015) Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells. Sci. Rep. 5, 8726.
  100. Kaushik, N. K., Attri, P., Kaushik, N. and Choi, E. H. (2013) A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells. Molecules 18, 4917-4928. https://doi.org/10.3390/molecules18054917
  101. Kaushik, N. K., Ghimire, B., Li, Y., Adhikari, M., Veerana, M., Kaushik, N., Jha, N., Adhikari, B., Lee, S. J., Masur, K., von Woedtke, T., Weltmann, K. D. and Choi, E. H. (2018) Biological and medical applications of plasma-activated media, water and solutions. Biol. Chem. 400, 39-62. https://doi.org/10.1515/hsz-2018-0226
  102. Kaushik, N. K., Kaushik, N., Adhikari, M., Ghimire, B., Linh, N. N., Mishra, Y. K., Lee, S. J. and Choi, E. H. (2019) Preventing the solid cancer progression via release of anticancer-cytokines in coculture with cold plasma-stimulated macrophages. Cancers (Basel) 11, 842.
  103. Keidar, M., Walk, R., Shashurin, A., Srinivasan, P., Sandler, A., Dasgupta, S., Ravi, R., Guerrero-Preston, R. and Trink, B. (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br. J. Cancer 105, 1295-1301. https://doi.org/10.1038/bjc.2011.386
  104. Keidar, M., Yan, D., Beilis, I. I., Trink, B. and Sherman, J. H. (2018) Plasmas for treating cancer: opportunities for adaptive and self-adaptive approaches. Trends Biotechnol. 36, 586-593. https://doi.org/10.1016/j.tibtech.2017.06.013
  105. Kenari, A. J., Siadati, S. N., Abedian, Z., Sohbatzadeh, F., Amiri, M., Gorji, K. E., Babapour, H., Zabihi, E., Ghoreishi, S. M., Mehraeen, R. and Monfared, A. S. (2021) Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells). Bioorg. Chem. 111, 104892.
  106. Khabipov, A., Freund, E., Liedtke, K. R., Kading, A., Riese, J., van der Linde, J., Kersting, S., Partecke, L.-I. and Bekeschus, S. (2021) Murine macrophages modulate their inflammatory profile in response to gas plasma-inactivated pancreatic cancer cells. Cancers (Basel) 13, 2525.
  107. Kim, C.-H., Bahn, J. H., Lee, S.-H., Kim, G.-Y., Jun, S.-I., Lee, K. and Baek, S. J. (2010a) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J. Biotechnol. 150, 530-538. https://doi.org/10.1016/j.jbiotec.2010.10.003
  108. Kim, C.-H., Kwon, S., Bahn, J. H., Lee, K., Jun, S. I., Rack, P. D. and Baek, S. J. (2010b) Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl. Phys. Lett. 96, 243701.
  109. Kim, G. C., Kim, G. J., Park, S. R., Jeon, S. M., Seo, H. J., Iza, F. and Lee, J. K. (2009) Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer. J. Phys. D: Appl. Phys. 42, 032005.
  110. Kim, H.-Y., Agrahari, G., Lee, M. J., Tak, L.-J., Ham, W.-K. and Kim, T.- Y. (2021) Low-temperature argon plasma regulates skin moisturizing and melanogenesis-regulating markers through yes-associated protein. Int. J. Mol. Sci. 22, 1895.
  111. Kim, H. W., Jeong, D., Ham, J., Kim, H., Ji, H. W., Choi, E. H. and Kim, S. J. (2020) ZNRD1 and its antisense long noncoding RNA ZNRD1-AS1 are oppositely regulated by cold atmospheric plasma in breast cancer cells. Oxid. Med. Cell. Longev. 2020, 9490567.
  112. Kim, J. Y., Ballato, J., Foy, P., Hawkins, T., Wei, Y., Li, J. and Kim, S.-O. (2011) Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens. Bioelectron. 28, 333-338. https://doi.org/10.1016/j.bios.2011.07.039
  113. Kim, S.-J., Seong, M.-J., Mun, J.-J., Bae, J.-H., Joh, H.-M. and Chung, T.-H. (2022) Differential sensitivity of melanoma cells and their noncancerous counterpart to cold atmospheric plasma-induced reactive oxygen and nitrogen species. Int. J. Mol. Sci. 23, 14092.
  114. Kim, S.-Y., Kim, H.-J., Kang, S. U., Kim, Y. E., Park, J. K., Shin, Y. S., Kim, Y. S., Lee, K. and Kim, C.-H. (2015) Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer. Oncotarget 6, 33382-33396. https://doi.org/10.18632/oncotarget.5407
  115. Kletschkus, K., Haralambiev, L., Nitsch, A., Pfister, F., Klinkmann, G., Kramer, A., Bekeschus, S., Mustea, A. and Stope, M. B. (2020) The application of a low-temperature physical plasma device operating under atmospheric pressure leads to the production of toxic NO2. Anticancer Res. 40, 2591-2599. https://doi.org/10.21873/anticanres.14230
  116. Koensgen, D., Besic, I., Gumbel, D., Kaul, A., Weiss, M., Diesing, K., Kramer, A., Bekeschus, S., Mustea, A. and Stope, M. B. (2017) Cold atmospheric plasma (CAP) and CAP-stimulated cell culture media suppress ovarian cancer cell growth - a putative treatment option in ovarian cancer therapy. Anticancer Res. 37, 6739-6744.
  117. Koinuma, H., Ohkubo, H., Hashimoto, T., Inomata, K., Shiraishi, T., Miyanaga, A. and Hayashi, S. (1992) Development and application of a microbeam plasma generator. Appl. Phys. Lett. 60, 816-817. https://doi.org/10.1063/1.106527
  118. Kordt, M., Trautmann, I., Schlie, C., Lindner, T., Stenzel, J., Schildt, A., Boeckmann, L., Bekeschus, S., Kurth, J., Krause, B. J., Vollmar, B. and Grambow, E. (2021) Multimodal imaging techniques to evaluate the anticancer effect of cold atmospheric pressure plasma. Cancers (Basel) 13, 2483.
  119. Koritzer, J., Boxhammer, V., Schafer, A., Shimizu, T., Klampfl, T. G., Li, Y.-F., Welz, C., Schwenk-Zieger, S., Morfill, G. E., Zimmermann, J. L. and Schlegel, J. (2013) Restoration of sensitivity in chemoresistant glioma cells by cold atmospheric plasma. PLoS One 8, e64498.
  120. Kugler, P., Becker, S., Welz, C., Wiesmann, N., Sax, J., Buhr, C. R., Thoma, M. H., Brieger, J. and Eckrich, J. (2022) Cold atmospheric plasma reduces vessel density and increases vascular permeability and apoptotic cell death in solid tumors. Cancers (Basel) 14, 2432.
  121. Kurake, N., Ishikawa, K., Tanaka, H., Hashizume, H., Nakamura, K., Kajiyama, H., Toyokuni, S., Kikkawa, F., Mizuno, M. and Hori, M. (2019) Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Arch. Biochem. Biophys. 662, 83-92. https://doi.org/10.1016/j.abb.2018.12.001
  122. Kurake, N., Tanaka, H., Ishikawa, K., Kondo, T., Sekine, M., Nakamura, K., Kajiyama, H., Kikkawa, F., Mizuno, M. and Hori, M. (2016) Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605, 102-108. https://doi.org/10.1016/j.abb.2016.01.011
  123. Kurita, H., Haruta, N., Uchihashi, Y., Seto, T. and Takashima, K. (2020) Strand breaks and chemical modification of intracellular DNA induced by cold atmospheric pressure plasma irradiation. PLoS One 15, e0232724.
  124. Lackmann, J. W., Schneider, S., Edengeiser, E., Jarzina, F., Brinckmann, S., Steinborn, E., Havenith, M., Benedikt, J. and Bandow, J. E. (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J. R. Soc. Interface 10, 20130591.
  125. Laroussi, M. (2018) Plasma medicine: a brief introduction. Plasma 1, 47-60. https://doi.org/10.3390/plasma1010005
  126. Laroussi, M. and Lu, X. (2005) Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 87, 113902.
  127. Laroussi, M., Tendero, C., Lu, X., Alla, S. and Hynes, W. L. (2006) Inactivation of bacteria by the plasma pencil. Plasma Processes Polym. 3, 470-473. https://doi.org/10.1002/ppap.200600005
  128. Lee, J., Moon, H., Ku, B., Lee, K., Hwang, C.-Y. and Baek, S. J. (2020) Anticancer effects of cold atmospheric plasma in canine osteosarcoma cells. Int. J. Mol. Sci. 21, 4556.
  129. Lee, S., Lee, H., Bae, H., Choi, E. H. and Kim, S. J. (2016) Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell. Sci. Rep. 6, 30005.
  130. Lee, S., Lee, H., Jeong, D., Ham, J., Park, S., Choi, E. H. and Kim, S. J. (2017) Cold atmospheric plasma restores tamoxifen sensitivity in resistant MCF-7 breast cancer cell. Free Radic. Biol. Med. 110, 280-290. https://doi.org/10.1016/j.freeradbiomed.2017.06.017
  131. Lee, S., Park, S., Lee, H., Jeong, D., Ham, J., Choi, E. H. and Kim, S. J. (2018) ChIP-seq analysis reveals alteration of H3K4 trimethylation occupancy in cancer-related genes by cold atmospheric plasma. Free Radic. Biol. Med. 126, 133-141. https://doi.org/10.1016/j.freeradbiomed.2018.08.004
  132. Lehmann, S., Bien-Moller, S., Marx, S., Bekeschus, S., Schroeder, H. W. S., Mustea, A. and Stope, M. B. (2023) Devitalization of glioblastoma cancer cells by non-invasive physical plasma: modulation of proliferative signalling cascades. Anticancer Res. 43, 7-18. https://doi.org/10.21873/anticanres.16128
  133. Li, W., Yu, H., Ding, D., Chen, Z., Wang, Y., Wang, S., Li, X., Keidar, M. and Zhang, W. (2019) Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radic. Biol. Med. 130, 71-81. https://doi.org/10.1016/j.freeradbiomed.2018.10.429
  134. Li, Y., Ho Kang, M., Sup Uhm, H., Joon Lee, G., Ha Choi, E. and Han, I. (2017) Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci. Rep. 7, 45781.
  135. Li, Y., Tang, T., Lee, H. and Song, K. (2021a) Cold atmospheric pressure plasma-activated medium induces selective cell death in human hepatocellular carcinoma cells independently of singlet oxygen, hydrogen peroxide, nitric oxide and nitrite/nitrate. Int. J. Mol. Sci. 22, 5548.
  136. Li, Y., Tang, T., Lee, H. J. and Song, K. (2021b) Selective anti-cancer effects of plasma-activated medium and its high efficacy with cisplatin on hepatocellular carcinoma with cancer stem cell characteristics. Int. J. Mol. Sci. 22, 3956.
  137. Lin, A., De Backer, J., Quatannens, D., Cuypers, B., Verswyvel, H., De La Hoz, E. C., Ribbens, B., Siozopoulou, V., Van Audenaerde, J., Marcq, E., Lardon, F., Laukens, K., Vanlanduit, S., Smits, E. and Bogaerts, A. (2022) The effect of local non-thermal plasma therapy on the cancer-immunity cycle in a melanoma mouse model. Bioeng. Transl. Med. 7, e10314.
  138. Lin, A., Gorbanev, Y., De Backer, J., Van Loenhout, J., Van Boxem, W., Lemiere, F., Cos, P., Dewilde, S., Smits, E. and Bogaerts, A. (2019) Non-thermal plasma as a unique delivery system of short-lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells. Adv. Sci. (Weinh.) 6, 1802062.
  139. Lin, A. G., Xiang, B., Merlino, D. J., Baybutt, T. R., Sahu, J., Fridman, A., Snook, A. E. and Miller, V. (2018) Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors. Oncoimmunology 7, e1484978.
  140. Liu, Z., Wang, L., Xing, Q., Liu, X., Hu, Y., Li, W., Yan, Q., Liu, R. and Huang, N. (2022) Identification of GLS as a cuproptosis-related diagnosis gene in acute myocardial infarction. Front. Cardiovasc. Med. 9, 1016081.
  141. Liu, Z., Zheng, Y., Dang, J., Zhang, J. and Zhang, J. (2019) A novel antifungal plasma-activated hydrogel. ACS Appl. Mater. Interfaces 11, 22941-22949. https://doi.org/10.1021/acsami.9b04700
  142. Lupu, A.-R., Georgescu, N., Calugaru, A., Cremer, L., Szegli, G. and Kerek, F. (2009) The effects of cold atmospheric plasma jets on B16 and COLO320 tumoral cells. Roum. Arch. Microbiol. Immunol. 68, 136-144.
  143. Ly, L., Cheng, X., Murthy, S. R. K., Jones, O. Z., Zhuang, T., Gitelis, S., Blank, A. T., Nissan, A., Adileh, M., Colman, M., Keidar, M., Basadonna, G. and Canady, J. (2022) Canady cold helios plasma reduces soft tissue sarcoma viability by inhibiting proliferation, disrupting cell cycle, and inducing apoptosis: a preliminary report. Molecules 27, 4168.
  144. Ma, Y., Ha, C. S., Hwang, S. W., Lee, H. J., Kim, G. C., Lee, K. W. and Song, K. (2014) Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One 9, e91947.
  145. Mahdikia, H., Shokri, B. and Majidzadeh-A, K. (2021) The feasibility study of plasma-activated water as a physical therapy to induce apoptosis in melanoma cancer cells in-vitro. Iran. J. Pharm. Res. 20, 337-350.
  146. Makinoshima, H., Takita, M., Matsumoto, S., Yagishita, A., Owada, S., Esumi, H. and Tsuchihara, K. (2014) Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J. Biol. Chem. 289, 20813-20823. https://doi.org/10.1074/jbc.M114.575464
  147. Manaloto, E., Gowen, A. A., Lesniak, A., He, Z., Casey, A., Cullen, P. J. and Curtin, J. F. (2020) Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells. Arch. Biochem. Biophys. 689, 108462.
  148. Mark, P. (2019) Plasma Scalpel Takes on Cancer: a New Tool Enters a Pivotal Pilot Study. Scientific American. Available from: https://www.scientificamerican.com/article/plasma-scalpel-takes-on-cancer/.
  149. Marzi, J., Stope, M. B., Henes, M., Koch, A., Wenzel, T., Holl, M., Layland, S. L., Neis, F., Bosmuller, H., Ruoff, F., Templin, M., Kramer, B., Staebler, A., Barz, J., Carvajal Berrio, D. A., Enderle, M., Loskill, P. M., Brucker, S. Y., Schenke-Layland, K. and Weiss, M. (2022) Noninvasive physical plasma as innovative and tissue-preserving therapy for women positive for cervical intraepithelial neoplasia. Cancers (Basel) 14, 1933.
  150. Mateu-Sanz, M., Ginebra, M.-P., Tornin, J. and Canal, C. (2022) Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radic. Biol. Med. 189, 32-41.
  151. Mateu-Sanz, M., Tornin, J., Brulin, B., Khlyustova, A., Ginebra, M.-P., Layrolle, P. and Canal, C. (2020) Cold plasma-treated Ringer's saline: a weapon to target osteosarcoma. Cancers (Basel) 12, 227.
  152. Metelmann, H.-R., Nedrelow, D. S., Seebauer, C., Schuster, M., von Woedtke, T., Weltmann, K.-D., Kindler, S., Metelmann, P. H., Finkelstein, S. E., Von Hoff, D. D. and Podmelle, F. (2015) Head and neck cancer treatment and physical plasma. Clin. Plasma Med. 3, 17-23. https://doi.org/10.1016/j.cpme.2015.02.001
  153. Metelmann, H.-R., Seebauer, C., Miller, V., Fridman, A., Bauer, G., Graves, D. B., Pouvesle, J.-M., Rutkowski, R., Schuster, M., Bekeschus, S., Wende, K., Masur, K., Hasse, S., Gerling, T., Hori, M., Tanaka, H., Choi, E. H., Weltmann, K.-D., Metelmann, P. H., Von Hoff, D. D. and von Woedtke, T. (2018) Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin. Plasma Med. 9, 6-13. https://doi.org/10.1016/j.cpme.2017.09.001
  154. Mihai, C.-T., Mihaila, I., Pasare, M. A., Pintilie, R. M., Ciorpac, M. and Topala, I. (2022) Cold atmospheric plasma-activated media improve paclitaxel efficacy on breast cancer cells in a combined treatment model. Curr. Issues Mol. Biol. 44, 1995-2014. https://doi.org/10.3390/cimb44050135
  155. Min, T., Xie, X., Ren, K., Sun, T., Wang, H., Dang, C. and Zhang, H. (2022) Therapeutic effects of cold atmospheric plasma on solid tumor. Front. Med. (Lausanne) 9, 884887.
  156. Mirpour, S., Piroozmand, S., Soleimani, N., Jalali Faharani, N., Ghomi, H., Fotovat Eskandari, H., Sharifi, A. M., Mirpour, S., Eftekhari, M. and Nikkhah, M. (2016) Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application. Sci. Rep. 6, 29048.
  157. Mokhtari, H., Farahmand, L., Yaserian, K., Jalili, N. and Majidzadeh-A, K. (2019) The antiproliferative effects of cold atmospheric plasma-activated media on different cancer cell lines, the implication of ozone as a possible underlying mechanism. J. Cell. Physiol. 234, 6778-6782. https://doi.org/10.1002/jcp.27428
  158. Nagaya, M., Hara, H., Kamiya, T. and Adachi, T. (2019) Inhibition of NAMPT markedly enhances plasma-activated medium-induced cell death in human breast cancer MDA-MB-231 cells. Arch. Biochem. Biophys. 676, 108155.
  159. Nitsch, A., Strakeljahn, S., Jacoby, J. M., Sieb, K. F., Mustea, A., Bekeschus, S., Ekkernkamp, A., Stope, M. B. and Haralambiev, L. (2022) New approach against chondrosoma cells-cold plasma treatment inhibits cell motility and metabolism, and leads to apoptosis. Biomedicines 10, 688.
  160. Pan, M., Qin, C. and Han, X. (2021) Lipid metabolism and lipidomics applications in cancer research. Adv. Exp. Med. Biol. 1316, 1-24. https://doi.org/10.1007/978-981-33-6785-2_1
  161. Park, S.-B., Kim, B., Bae, H., Lee, H., Lee, S., Choi, E. H. and Kim, S. J. (2015) Differential epigenetic effects of atmospheric cold plasma on MCF-7 and MDA-MB-231 breast cancer cells. PLoS One 10, e0129931.
  162. Park, S., Kim, H., Ji, H. W., Kim, H. W., Yun, S. H., Choi, E. H. and Kim, S. J. (2019) Cold atmospheric plasma restores paclitaxel sensitivity to paclitaxel-resistant breast cancer cells by reversing expression of resistance-related genes. Cancers (Basel) 11, 2011.
  163. Partecke, L. I., Evert, K., Haugk, J., Doering, F., Normann, L., Diedrich, S., Weiss, F.-U., Evert, M., Huebner, N. O., Guenther, C., Heidecke, C. D., Kramer, A., Bussiahn, R., Weltmann, K.-D., Pati, O., Bender, C. and von Bernstorff, W. (2012) Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12, 473.
  164. Pasqual-Melo, G., Nascimento, T., Sanches, L. J., Blegniski, F. P., Bianchi, J. K., Sagwal, S. K., Berner, J., Schmidt, A., Emmert, S., Weltmann, K.-D., von Woedtke, T., Gandhirajan, R. K., Cecchini, A. L. and Bekeschus, S. (2020) Plasma treatment limits cutaneous squamous cell carcinoma development in vitro and in vivo. Cancers (Basel) 12, 1993.
  165. Pefani-Antimisiari, K., Athanasopoulos, D. K., Marazioti, A., Sklias, K., Rodi, M., de Lastic, A.-L., Mouzaki, A., Svarnas, P. and Antimisiaris, S. G. (2021) Synergistic effect of cold atmospheric pressure plasma and free or liposomal doxorubicin on melanoma cells. Sci. Rep. 11, 14788.
  166. Privat-Maldonado, A., Gorbanev, Y., Dewilde, S., Smits, E. and Bogaerts, A. (2018) Reduction of human glioblastoma spheroids using cold atmospheric plasma: the combined effect of short- and long-lived reactive species. Cancers (Basel) 10, 394.
  167. Privat-Maldonado, A., Verloy, R., Cardenas Delahoz, E., Lin, A., Vanlanduit, S., Smits, E. and Bogaerts, A. (2022) Cold atmospheric plasma does not affect stellate cells phenotype in pancreatic cancer tissue in ovo. Int. J. Mol. Sci. 23, 1954.
  168. Qi, M., Xu, D., Wang, S., Li, B., Peng, S., Li, Q., Zhang, H., Fan, R., Chen, H. and Kong, M. G. (2022a) In vivo metabolic analysis of the anticancer effects of plasma-activated saline in three tumor animal models. Biomedicines 10, 528.
  169. Qi, M., Zhao, X., Fan, R., Zhang, X., Peng, S., Xu, D. and Yang, Y. (2022b) Cold atmospheric plasma suppressed MM in vivo engraftment by increasing ROS and inhibiting the notch signaling pathway. Molecules 27, 5832.
  170. Rebl, H., Sawade, M., Hein, M., Bergemann, C., Wende, M., Lalk, M., Langer, P., Emmert, S. and Nebe, B. (2022) Synergistic effect of plasma-activated medium and novel indirubin derivatives on human skin cancer cells by activation of the AhR pathway. Sci. Rep. 12, 2528.
  171. Recek, N., Cheng, X., Keidar, M., Cvelbar, U., Vesel, A., Mozetic, M. and Sherman, J. (2015) Effect of cold plasma on glial cell morphology studied by atomic force microscopy. PLoS One 10, e0119111.
  172. Saadati, F., Mahdikia, H., Abbaszadeh, H.-A., Abdollahifar, M.-A., Khoramgah, M. S. and Shokri, B. (2018) Comparison of Direct and Indirect cold atmospheric-pressure plasma methods in the B16F10 melanoma cancer cells treatment. Sci. Rep. 8, 7689.
  173. Saadati, F., Moritz, J., Berner, J., Freund, E., Miebach, L., Helfrich, I., Stoffels, I., Emmert, S. and Bekeschus, S. (2021) Patient-derived human basal and cutaneous squamous cell carcinoma tissues display apoptosis and immunomodulation following gas plasma exposure with a certified argon jet. Int. J. Mol. Sci. 22, 11446.
  174. Sato, Y., Yamada, S., Takeda, S., Hattori, N., Nakamura, K., Tanaka, H., Mizuno, M., Hori, M. and Kodera, Y. (2018) Effect of plasma-activated lactated Ringer's solution on pancreatic cancer cells in vitro and in vivo. Ann. Surg. Oncol. 25, 299-307. https://doi.org/10.1245/s10434-017-6239-y
  175. Schneider, C., Arndt, S., Zimmermann, J. L., Li, Y., Karrer, S. and Bosserhoff, A. K. (2018a) Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biol. Chem. 400, 111-122. https://doi.org/10.1515/hsz-2018-0193
  176. Schneider, C., Gebhardt, L., Arndt, S., Karrer, S., Zimmermann, J. L., Fischer, M. J. M. and Bosserhoff, A.-K. (2018b) Cold atmospheric plasma causes a calcium influx in melanoma cells triggering CAP-induced senescence. Sci. Rep. 8, 10048.
  177. Schneider, C., Gebhardt, L., Arndt, S., Karrer, S., Zimmermann, J. L., Fischer, M. J. M. and Bosserhoff, A.-K. (2019) Acidification is an essential process of cold atmospheric plasma and promotes the anti-cancer effect on malignant melanoma cells. Cancers (Basel) 11, 671.
  178. Schuster, M., Seebauer, C., Rutkowski, R., Hauschild, A., Podmelle, F., Metelmann, C., Metelmann, B., von Woedtke, T., Hasse, S., Weltmann, K.-D. and Metelmann, H.-R. (2016) Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. J. Craniomaxillofac. Surg. 44, 1445-1452. https://doi.org/10.1016/j.jcms.2016.07.001
  179. Senga, S. S. and Grose, R. P. (2021) Hallmarks of cancer-the new testament. Open Biol. 11, 200358.
  180. Sersenova, D., Machala, Z., Repiska, V. and Gbelcova, H. (2021) Selective apoptotic effect of plasma activated liquids on human cancer cell lines. Molecules 26, 4254.
  181. Shaw, P., Kumar, N., Hammerschmid, D., Privat-Maldonado, A., Dewilde, S. and Bogaerts, A. (2019) Synergistic effects of melittin and plasma treatment: a promising approach for cancer therapy. Cancers (Basel) 11, 1109.
  182. Silva-Teixeira, R., Laranjo, M., Lopes, B., Almeida-Ferreira, C., Goncalves, A. C., Rodrigues, T., Matafome, P., Sarmento-Ribeiro, A. B., Caramelo, F. and Botelho, M. F. (2021) Plasma activated media and direct exposition can selectively ablate retinoblastoma cells. Free Radic. Biol. Med. 171, 302-313. https://doi.org/10.1016/j.freeradbiomed.2021.05.027
  183. Siu, A., Volotskova, O., Cheng, X., Khalsa, S. S., Bian, K., Murad, F., Keidar, M. and Sherman, J. H. (2015) Differential effects of cold atmospheric plasma in the treatment of malignant glioma. PLoS One 10, e0126313.
  184. Soni, V., Adhikari, M., Simonyan, H., Lin, L., Sherman, J. H., Young, C. N. and Keidar, M. (2021) In vitro and in vivo enhancement of temozolomide effect in human glioblastoma by non-invasive application of cold atmospheric plasma. Cancers (Basel) 13, 4485.
  185. Stoffels, E., Flikweert, A. J., Stoffels, W. W. and Kroesen, G. M. W. (2002) Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci. Technol. 11, 383.
  186. Stope, M. B., Benouahi, R., Sander, C., Haralambiev, L., Nitsch, A., Egger, E. and Mustea, A. (2020) Protherapeutic effects and inactivation of mammary carcinoma cells by a medical argon plasma device. Anticancer Res. 40, 6205-6212. https://doi.org/10.21873/anticanres.14640
  187. Suzuki-Karasaki, M., Ando, T., Ochiai, Y., Kawahara, K., Suzuki-Karasaki, M., Nakayama, H. and Suzuki-Karasaki, Y. (2022) Air plasma-activated medium evokes a death-associated perinuclear mitochondrial clustering. Int. J. Mol. Sci. 23, 1124.
  188. Tahmasebi, G., Eslami, E., Naserzadeh, P., Seydi, E. and Pourahmad, J. (2020) Role of mitochondria and lysosomes in the selective cytotoxicity of cold atmospheric plasma on retinoblastoma cells. Iran. J. Pharm. Res. 19, 203-215.
  189. Tanaka, H., Mizuno, M., Katsumata, Y., Ishikawa, K., Kondo, H., Hashizume, H., Okazaki, Y., Toyokuni, S., Nakamura, K., Yoshikawa, N., Kajiyama, H., Kikkawa, F. and Hori, M. (2019) Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Sci. Rep. 9, 13657.
  190. Tavares-da-Silva, E., Pereira, E., Pires, A. S., Neves, A. R., Braz-Guilherme, C., Marques, I. A., Abrantes, A. M., Goncalves, A. C., Caramelo, F., Silva-Teixeira, R., Mendes, F., Figueiredo, A. and Botelho, M. F. (2021) Cold atmospheric plasma, a novel approach against bladder cancer, with higher sensitivity for the high-grade cell line. Biology (Basel) 10, 41.
  191. Terefinko, D., Dzimitrowicz, A., Bielawska-Pohl, A., Klimczak, A., Pohl, P. and Jamroz, P. (2021) The influence of cold atmospheric pressure plasma-treated media on the cell viability, motility, and induction of apoptosis in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. Int. J. Mol. Sci. 22, 3855.
  192. Thiem, A., Has, C., Diem, A., Klausegger, A., Hamm, H. and Emmert, S. (2022) Wound therapy with cold atmospheric plasma in severe recessive dystrophic epidermolysis bullosa: a pilot study. Hautarzt 73, 384-390. https://doi.org/10.1007/s00105-021-04883-5
  193. Thiyagarajan, M., Sarani, A. and Gonzales, X. F. (2013) Characterization of an atmospheric pressure plasma jet and its applications for disinfection and cancer treatment. Stud. Health Technol. Inform. 184, 443-449.
  194. Tian, Y., Zhang, Z., Zhang, Z. and Dai, X. (2022) Hsa_circRNA_0040462: a sensor of cells' response to CAP treatment with double-edged roles on breast cancer malignancy. Int. J. Med. Sci. 19, 640-650. https://doi.org/10.7150/ijms.66940
  195. Tornin, J., Labay, C., Tampieri, F., Ginebra, M. P. and Canal, C. (2021) Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures. Nat. Protoc. 16, 2826-2850. https://doi.org/10.1038/s41596-021-00521-5
  196. Tornin, J., Mateu-Sanz, M., Rodriguez, A., Labay, C., Rodriguez, R. and Canal, C. (2019) Pyruvate plays a main role in the antitumoral selectivity of cold atmospheric plasma in osteosarcoma. Sci. Rep. 9, 10681.
  197. Tornin, J., Villasante, A., Sole-Marti, X., Ginebra, M.-P. and Canal, C. (2021) Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radic. Biol. Med. 164, 107-118. https://doi.org/10.1016/j.freeradbiomed.2020.12.437
  198. Trzeciak, E. R., Zimmer, N., Gehringer, I., Stein, L., Graefen, B., Schupp, J., Stephan, A., Rietz, S., Prantner, M. and Tuettenberg, A. (2022) Oxidative stress differentially influences the survival and metabolism of cells in the melanoma microenvironment. Cells 11, 930.
  199. Turrini, E., Laurita, R., Stancampiano, A., Catanzaro, E., Calcabrini, C., Maffei, F., Gherardi, M., Colombo, V. and Fimognari, C. (2017) Cold atmospheric plasma induces apoptosis and oxidative stress pathway regulation in T-lymphoblastoid leukemia cells. Oxid. Med. Cell. Longev. 2017, 4271065.
  200. Van der Paal, J., Verheyen, C., Neyts, E. C. and Bogaerts, A. (2017) Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: possible explanation for plasma cancer selectivity. Sci. Rep. 7, 39526.
  201. Van Loenhout, J., Flieswasser, T., Freire Boullosa, L., De Waele, J., Van Audenaerde, J., Marcq, E., Jacobs, J., Lin, A., Lion, E., Dewitte, H., Peeters, M., Dewilde, S., Lardon, F., Bogaerts, A., Deben, C. and Smits, E. (2019) Cold atmospheric plasma-treated pbs eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells. Cancers (Basel) 11, 1597.
  202. Van Loenhout, J., Freire Boullosa, L., Quatannens, D., De Waele, J., Merlin, C., Lambrechts, H., Lau, H. W., Hermans, C., Lin, A., Lardon, F., Peeters, M., Bogaerts, A., Smits, E. and Deben, C. (2021) Auranofin and cold atmospheric plasma synergize to trigger distinct cell death mechanisms and immunogenic responses in glioblastoma. Cells 10, 2936.
  203. Vaquero, J., Judee, F., Vallette, M., Decauchy, H., Arbelaiz, A., Aoudjehane, L., Scatton, O., Gonzalez-Sanchez, E., Merabtene, F., Augustin, J., Housset, C., Dufour, T. and Fouassier, L. (2020) Cold-atmospheric plasma induces tumor cell death in preclinical in vivo and in vitro models of human cholangiocarcinoma. Cancers (Basel) 12, 1280.
  204. Vejdani Noghreiyan, A., Imanparast, A., Shayesteh Ara, E., Soudmand, S., Vejdani Noghreiyan, V. and Sazgarnia, A. (2020) In-vitro investigation of cold atmospheric plasma induced photodynamic effect by Indocyanine green and Protoporphyrin IX. Photodiagnosis Photodyn. Ther. 31, 101822.
  205. Vijayarangan, V., Delalande, A., Dozias, S., Pouvesle, J. M., Robert, E. and Pichon, C. (2020) New insights on molecular internalization and drug delivery following plasma jet exposures. Int. J. Pharm. 589, 119874.
  206. Von Woedtke, T., Schmidt, A., Bekeschus, S., Wende, K. and Weltmann, K.-D. (2019) Plasma medicine: a field of applied redox biology. In Vivo 33, 1011-1026. https://doi.org/10.21873/invivo.11570
  207. Walk, R. M., Snyder, J. A., Srinivasan, P., Kirsch, J., Diaz, S. O., Blanco, F. C., Shashurin, A., Keidar, M. and Sandler, A. D. (2013) Cold atmospheric plasma for the ablative treatment of neuroblastoma. J. Pediatr. Surg. 48, 67-73. https://doi.org/10.1016/j.jpedsurg.2012.10.020
  208. Wandke, D., Busse, B. and Helmke, A. (2022) Textbook of Good Clincial Practice in Cold Plasma Therapy. Switzerland Springer Nature.
  209. Wang, D., Zhang, J., Cai, L. and Dai, X. (2022a) Cold atmospheric plasma conveys selectivity against hepatocellular carcinoma cells via triggering EGFR(Tyr1068)-mediated autophagy. Front. Oncol. 12, 895106.
  210. Wang, L., Yang, X., Yang, C., Gao, J., Zhao, Y., Cheng, C., Zhao, G. and Liu, S. (2019) The inhibition effect of cold atmospheric plasma-activated media in cutaneous squamous carcinoma cells. Future Oncol. 15, 495-505. https://doi.org/10.2217/fon-2018-0419
  211. Wang, M., Holmes, B., Cheng, X., Zhu, W., Keidar, M. and Zhang, L. G. (2013) Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One 8, e73741.
  212. Wang, P., Zhou, R., Thomas, P., Zhao, L., Zhou, R., Mandal, S., Jolly, M. K., Richard, D. J., Rehm, B. H. A., Ostrikov, K. K., Dai, X., Williams, E. D. and Thompson, E. W. (2021) Epithelial-to-mesenchymal transition enhances cancer cell sensitivity to cytotoxic effects of cold atmospheric plasmas in breast and bladder cancer systems. Cancers (Basel) 13, 2889.
  213. Wang, P., Zhou, R., Zhou, R., Recek, N., Prasad, K., Speight, R., Richard, D., Cullen, P. J., Thompson, E. W., Ostrikov, K. K. and Bazaka, K. (2020) Chemo-radiative stress of plasma as a modulator of charge-dependent nanodiamond cytotoxicity. ACS Appl. Bio. Mater. 3, 7202-7210. https://doi.org/10.1021/acsabm.0c01000
  214. Wang, Y., Mang, X., Li, X., Cai, Z. and Tan, F. (2022b) Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway. Front. Cell Dev. Biol. 10, 915785.
  215. Wang, Y., Zhang, L. and Zhou, F. (2022c) Cuproptosis: a new form of programmed cell death. Cell Mol. Immunol. 19, 867-868. https://doi.org/10.1038/s41423-022-00866-1
  216. Weiss, M., Gumbel, D., Gelbrich, N., Brandenburg, L.-O., Mandelkow, R., Zimmermann, U., Ziegler, P., Burchardt, M. and Stope, M. B. (2015a) Inhibition of cell growth of the prostate cancer cell model LNCaP by cold atmospheric plasma. In Vivo 29, 611-616.
  217. Weiss, M., Gumbel, D., Hanschmann, E.-M., Mandelkow, R., Gelbrich, N., Zimmermann, U., Walther, R., Ekkernkamp, A., Sckell, A., Kramer, A., Burchardt, M., Lillig, C. H. and Stope, M. B. (2015b) Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One 10, e0130350.
  218. Welz, C., Emmert, S., Canis, M., Becker, S., Baumeister, P., Shimizu, T., Morfill, G. E., Harreus, U. and Zimmermann, J. L. (2015) Cold atmospheric plasma: a promising complementary therapy for squamous head and neck cancer. PLoS One 10, e0141827.
  219. Wenzel, T., Carvajal Berrio, D. A., Daum, R., Reisenauer, C., Weltmann, K.-D., Wallwiener, D., Brucker, S. Y., Schenke-Layland, K., Brauchle, E.-M. and Weiss, M. (2019) Molecular effects and tissue penetration depth of physical plasma in human mucosa analyzed by contact- and marker-independent raman microspectroscopy. ACS Appl. Mater. Interfaces 11, 42885-42895. https://doi.org/10.1021/acsami.9b13221
  220. Wirtz, M., Stoffels, I., Dissemond, J., Schadendorf, D. and Roesch, A. (2018) Actinic keratoses treated with cold atmospheric plasma. J. Eur. Acad. Dermatol. Venereol. 32, e37-e39. https://doi.org/10.1111/jdv.14465
  221. Xia, J., Zeng, W., Xia, Y., Wang, B., Xu, D., Liu, D., Kong, M. G. and Dong, Y. (2019) Cold atmospheric plasma induces apoptosis of melanoma cells via Sestrin2-mediated nitric oxide synthase signaling. J. Biophotonics 12, e201800046.
  222. Xiang, L., Xu, X., Zhang, S., Cai, D. and Dai, X. (2018) Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radic. Biol. Med. 124, 205-213. https://doi.org/10.1016/j.freeradbiomed.2018.06.001
  223. Xu, D., Cui, Q., Xu, Y., Chen, Z., Xia, W., Yang, Y. and Liu, D. (2019a) Plasma enhance drug sensitivity to bortezomib by inhibition of cyp1a1 in myeloma cells. Transl. Cancer Res. 8, 2841-2847. https://doi.org/10.21037/tcr.2019.10.43
  224. Xu, D., Luo, X., Xu, Y., Cui, Q., Yang, Y., Liu, D., Chen, H. and Kong, M. G. (2016) The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem. Biophys. Res. Commun. 473, 1125-1132. https://doi.org/10.1016/j.bbrc.2016.04.027
  225. Xu, D., Ning, N., Xu, Y., Wang, B., Cui, Q., Liu, Z., Wang, X., Liu, D., Chen, H. and Kong, M. G. (2019b) Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells. Cancer Cell Int. 19, 135.
  226. Xu, D., Ning, N., Xu, Y., Xia, W., Liu, D., Chen, H. and Kong, M. G. (2021) Effect of he plasma jet versus surface plasma on the metabolites of acute myeloid leukemia cells. Front. Oncol. 11, 552480.
  227. Xu, D., Xu, Y., Cui, Q., Liu, D., Liu, Z., Wang, X., Yang, Y., Feng, M., Liang, R., Chen, H., Ye, K. and Kong, M. G. (2018a) Cold atmospheric plasma as a potential tool for multiple myeloma treatment. Oncotarget 9, 18002-18017. https://doi.org/10.18632/oncotarget.24649
  228. Xu, D., Xu, Y., Ning, N., Cui, Q., Liu, Z., Wang, X., Liu, D., Chen, H. and Kong, M. G. (2018b) Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells. Cancer Cell Int. 18, 42.
  229. Xu, S., Wang, Y., Que, Y., Ma, C., Cai, S., Wang, H., Yang, X., Yang, C., Cheng, C., Zhao, G. and Hu, Y. (2020) Cold atmospheric plasma-activated Ringer's solution inhibits the proliferation of osteosarcoma cells through the mitochondrial apoptosis pathway. Oncol. Rep. 43, 1683-1691.
  230. Yadav, D. K., Adhikari, M., Kumar, S., Ghimire, B., Han, I., Kim, M.-H. and Choi, E.-H. (2020) Cold atmospheric plasma generated reactive species aided inhibitory effects on human melanoma cells: an in vitro and in silico study. Sci. Rep. 10, 3396.
  231. Yan, D., Cui, H., Zhu, W., Nourmohammadi, N., Milberg, J., Zhang, L. G., Sherman, J. H. and Keidar, M. (2017a) The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci. Rep. 7, 4479.
  232. Yan, D., Cui, H., Zhu, W., Talbot, A., Zhang, L. G., Sherman, J. H. and Keidar, M. (2017b) The strong cell-based hydrogen peroxide generation triggered by cold atmospheric plasma. Sci. Rep. 7, 10831.
  233. Yan, D., Nourmohammadi, N., Bian, K., Murad, F., Sherman, J. H. and Keidar, M. (2016a) Stabilizing the cold plasma-stimulated medium by regulating medium's composition. Sci. Rep. 6, 26016.
  234. Yan, D., Nourmohammadi, N., Talbot, A., Sherman, J. H. and Keidar, M. (2016b) The strong anti-glioblastoma capacity of the plasma-stimulated lysine-rich medium. J. Phys. D: Appl. Phys. 49, 274001.
  235. Yan, D., Sherman, J. H. and Keidar, M. (2017c) Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8, 15977-15995. https://doi.org/10.18632/oncotarget.13304
  236. Yan, D., Talbot, A., Nourmohammadi, N., Cheng, X., Canady, J., Sherman, J. and Keidar, M. (2015) Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci. Rep. 5, 18339.
  237. Yan, D., Wang, Q., Adhikari, M., Malyavko, A., Lin, L., Zolotukhin, D. B., Yao, X., Kirschner, M., Sherman, J. H. and Keidar, M. (2020) A physically triggered cell death via transbarrier cold atmospheric plasma cancer treatment. ACS Appl. Mater Interfaces 12, 34548-34563. https://doi.org/10.1021/acsami.0c06500
  238. Yan, D., Wang, Q., Yao, X., Malyavko, A. and Keidar, M. (2021) Antimelanoma capability of contactless cold atmospheric plasma treatment. Int. J. Mol. Sci. 22, 11728.
  239. Yan, D., Xu, W., Yao, X., Lin, L., Sherman, J. H. and Keidar, M. (2018) The cell activation phenomena in the cold atmospheric plasma cancer treatment. Sci. Rep. 8, 15418.
  240. Yan, X., Meng, Z., Ouyang, J., Qiao, Y. and Yuan, F. (2017d) New application of an atmospheric pressure plasma jet as a neuro-protective agent against glucose deprivation-induced injury of SH-SY5Y cells. J. Vis. Exp. (128), 56323.
  241. Yang, F., Zhou, Y., Yu, H., Yang, J., Zhu, C., Ahmad, N., Meng, X., Zhao, R., Zhuang, J. and Sun, M. (2021) Combination of metformin and cold atmospheric plasma induces glioma cell death to associate with c-Fos. Neoplasma 68, 126-134. https://doi.org/10.4149/neo_2020_200325N307
  242. Yang, X., Chen, G., Yu, K. N., Yang, M., Peng, S., Ma, J., Qin, F., Cao, W., Cui, S., Nie, L. and Han, W. (2020a) Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death Dis. 11, 295.
  243. Yang, X., Yang, C., Wang, L., Cao, Z., Wang, Y., Cheng, C., Zhao, G. and Zhao, Y. (2020b) Inhibition of basal cell carcinoma cells by cold atmospheric plasma-activated solution and differential gene expression analysis. Int. J. Oncol. 56, 1262-1273. https://doi.org/10.3892/ijo.2020.5009
  244. Yao, X., Yan, D., Lin, L., Sherman, J. H., Peters, K. B., Keir, S. T. and Keidar, M. (2022) Cold plasma discharge tube enhances antitumoral efficacy of temozolomide. ACS Appl. Bio. Mater. 5, 1610-1623. https://doi.org/10.1021/acsabm.2c00018
  245. Yazdani, Z., Biparva, P., Rafiei, A., Kardan, M. and Hadavi, S. (2022) Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One 17, e0279120.
  246. Yazdani, Z., Mehrabanjoubani, P., Rafiei, A., Biparva, P. and Kardan, M. (2021) Combined effect of cold atmospheric plasma and curcumin in melanoma cancer. Biomed. Res. Int. 2021, 1969863.
  247. Yoon, Y. J., Suh, M. J., Lee, H. Y., Lee, H. J., Choi, E. H., Moon, I. S. and Song, K. (2018) Anti-tumor effects of cold atmospheric pressure plasma on vestibular schwannoma demonstrate its feasibility as an intra-operative adjuvant treatment. Free Radic. Biol. Med. 115, 43-56. https://doi.org/10.1016/j.freeradbiomed.2017.11.011
  248. Yu, H., Song, X., Yang, F., Wang, J., Sun, M., Liu, G., Ahmad, N., Zhou, Y., Zhang, Y., Shi, G., Zhang, R., Liu, J., Jiang, X., Fu, P., Chen, G., Li, J., Zhuang, J. and Sun, M. (2023) Combined effects of vitamin C and cold atmospheric plasma-conditioned media against glioblastoma via hydrogen peroxide. Free Radic. Biol. Med. 194, 1-11. https://doi.org/10.1016/j.freeradbiomed.2022.11.028
  249. Yu, H., Wang, Y., Wang, S., Li, X., Li, W., Ding, D., Gong, X., Keidar, M. and Zhang, W. (2018) Paclitaxel-loaded core-shell magnetic nanoparticles and cold atmospheric plasma inhibit non-small cell lung cancer growth. ACS Appl. Mater Interfaces 10, 43462-43471. https://doi.org/10.1021/acsami.8b16487
  250. Zahedian, S., Hekmat, A., Tackallou, S. H. and Ghoranneviss, M. (2022) The impacts of prepared plasma-activated medium (PAM) combined with doxorubicin on the viability of MCF-7 breast cancer cells: a new cancer treatment strategy. Rep. Biochem. Mol. Biol. 10, 640-652. https://doi.org/10.52547/rbmb.10.4.640
  251. Zhang, H., Zhang, J., Guo, B., Chen, H., Xu, D. and Kong, M. G. (2021) The antitumor effects of plasma-activated saline on muscle-invasive bladder cancer cells in vitro and in vivo demonstrate its feasibility as a potential therapeutic approach. Cancers (Basel) 13, 1042.
  252. Zhao, L., Yan, C., Kong, S., Jia, T., Chu, Z., Yang, L., Wu, J., Geng, S. and Guo, K. (2022) Biosafety and differentially expressed genes analysis of melanoma cells treated with cold atmospheric plasma. J. Biophotonics 15, e202100403.
  253. Zhao, S., Xiong, Z., Mao, X., Meng, D., Lei, Q., Li, Y., Deng, P., Chen, M., Tu, M., Lu, X., Yang, G. and He, G. (2013) Atmospheric pressure room temperature plasma jets facilitate oxidative and nitrative stress and lead to endoplasmic reticulum stress dependent apoptosis in HepG2 cells. PLoS One 8, e73665.
  254. Zhou, X., Cai, D., Xiao, S., Ning, M., Zhou, R., Zhang, S., Chen, X., Ostrikov, K. and Dai, X. (2020) InvivoPen: a novel plasma source for in vivo cancer treatment. J. Cancer 11, 2273-2282. https://doi.org/10.7150/jca.38613
  255. Zhou, Y., Zhang, Y., Bao, J., Chen, J. and Song, W. (2022) Low temperature plasma suppresses lung cancer cells growth via VEGF/VEGFR2/RAS/ERK axis. Molecules 27, 5934.
  256. Zhunussova, A., Vitol, E. A., Polyak, B., Tuleukhanov, S., Brooks, A. D., Sensenig, R., Friedman, G. and Orynbayeva, Z. (2016) Mitochondria-mediated anticancer effects of non-thermal atmospheric plasma. PLoS One 11, e0156818.
  257. Zimmermann, T., Gebhardt, L. A., Kreiss, L., Schneider, C., Arndt, S., Karrer, S., Friedrich, O., Fischer, M. J. M. and Bosserhoff, A.-K. (2021) Acidified nitrite contributes to the antitumor effect of cold atmospheric plasma on melanoma cells. Int. J. Mol. Sci. 22, 3757.
  258. Zucker, S. N., Zirnheld, J., Bagati, A., DiSanto, T. M., Des Soye, B., Wawrzyniak, J. A., Etemadi, K., Nikiforov, M. and Berezney, R. (2012) Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch. Cancer Biol. Ther. 13, 1299-1306. https://doi.org/10.4161/cbt.21787