
INTRODUCTION

Breast cancer is the most common malignant tumor and 
a frequent cause of cancer-related deaths among females 
globally (Sung et al., 2021). Breast cancer is classified into 
three major subtypes based on the expression of estrogen 
receptor (ER), progesterone receptor (PR), and human epi-
dermal growth factor receptor 2 (HER2) (Perou et al., 2000). 
Approximately 70% of breast cancer patients are hormone 
receptor positive/HER2 negative. HER2 positive cancer rep-
resents 15%-20% of the patients, and triple-negative breast 
cancer (TNBC) comprises 15% of the patients (Waks and 
Winer, 2019). The main treatment strategies for breast can-
cer are surgery, radiation, chemotherapy, endocrine therapy, 
and targeted therapy (Waks and Winer, 2019). Trastuzumab, 
a well-known therapeutic monoclonal antibody, is a represen-
tative agent to target HER2 for breast cancer patients (Hudis, 

2007). Trastuzumab in combination with chemotherapy has 
led to significantly increased disease-free survival and over-
all survival of HER2 positive breast cancer patients (Slamon 
et al., 2011). For the treatment of hormone receptor-positive 
breast cancers, aromatase inhibitors, such as anastrozole and 
letrozole, in combination with cyclin-dependent kinase (CDK) 
4/6 inhibitors are considered for the first-line therapy (Rossi et 
al., 2019; Waks and Winer, 2019). Despite these attempts in 
breast cancer treatment, metastasis and chemoresistance still 
remain as major problems in breast cancer treatment. In this 
context, further research is needed to study novel therapeutic 
targets to overcome the limitations of breast cancer treatment. 

Natural products have been used as therapeutic agent 
for centuries and continued to be utilized for the treatment 
of various diseases to this day (Cragg and Pezzuto, 2016). 
Homoisoflavonoids (3-benzylidenechroman-4-ones), a type of 
phenolic compounds, are found mainly in plants, such as Cae-
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salpinia sappan and Ophiopogon japonicas (Lin et al., 2014). 
Homoisoflavonoids are reported to have numerous biomedical 
properties, including anti-inflammatory (du Toit et al., 2005), 
antioxidative (Zhou et al., 2015), and wound healing activities 
(Rashed et al., 2003). For example, homoisoflavonoids from 
Portulaca oleracea have been shown to have cytotoxic activ-
ity in cancer cell lines (Yan et al., 2012) and cremastranone, 
a homoisoflavanone from Cremastra appendiculata to exhibit 
anti-angiogenic activity in endothelial cells (Shim et al., 2004; 
Kim et al., 2008). In addition, its synthetic derivatives were 
previously investigated for its anti-angiogenic potential in vitro 
and in vivo in ocular disease models (Lee et al., 2014; Basa-
varajappa et al., 2015). Furthermore, it has been reported that 
cremastranone-derived homoisoflavonoid is a protein-binding 
partner of ferrochelatase (FECH) and inhibits the activity of 
the FECH (Basavarajappa et al., 2017). 

Programmed cell death, such as apoptosis, autophagy, and 
programmed necrosis, is mediated by cascades of intracel-
lular events (Ouyang et al., 2012). In cancer cells, in contrast 
to normal cells, the apoptosis pathway is inhibited, and the 
phenomenon contributes to uncontrolled cell growth, metas-
tasis, and resistance to anti-cancer therapies (Goldar et al., 
2015; Pfeffer and Singh, 2018). Thus, targeting apoptosis is 
a promising strategy for anti-cancer therapy. Ferroptosis, a 
novel type of programmed cell death, was first proposed by 
Dixon in 2012 (Dixon et al., 2012). Ferroptosis is caused by 
increased lipid peroxidation via accumulation of iron or down-
regulation of glutathione peroxidase 4 (GPX4). GPX4 is a ma-
jor component in ferroptosis pathway, and GPX4 suppresses 
ferroptosis by acting as an antioxidant protein and is activated 
by glutathione (GSH) (Yu et al., 2021). To sustain abnormal 
growth, cancer cells exhibit an increased iron requirement 
compared with normal cells, and the characteristic can make 
cancer cells more susceptible to ferroptosis. Thus, ferropto-
sis has been attracting attention as a new target for cancer 
treatment. It is also considered as an alternative to overcome 
chemoresistance (Zhang et al., 2022).

Heme (iron-protoporphyrin IX) is an important cofactor in-
volved in various biological processes. It acts as a prosthetic 
group in diverse hemoproteins, which participates in pro-
cesses such as oxygen transport, oxygen storage, electron 
transfer, signal transduction, and metabolism of drugs and 
steroids. On the other hand, excess free heme causes oxi-
dative stress, lipid peroxidation, and even cell death (Kumar 
and Bandyopadhyay, 2005). Therefore, intracellular heme ho-
meostasis is regulated tightly by several defense mechanisms 
(Chiabrando et al., 2014). For example, 5-aminolevulinic acid 
synthase 1 (ALAS1) is a rate-limiting enzyme in the heme syn-
thetic pathway and is negatively regulated by cellular heme 
(Ponka, 1997). Heme is degraded by heme oxygenase-1 
(HO-1; HMOX-1) into biliverdin, ferrous iron, and carbon mon-
oxide (CO) (Kikuchi et al., 2005). Recent studies show that 
dysregulation of heme metabolism seems to be associated 
with tumor progression (Wang et al., 2021). It indicates that 
targeting heme metabolism is a potent therapeutic strategy for 
the treatment of cancer.

In our previous study, we found that the synthetic homoiso-
flavane derivatives of cremastranone SH-17059, SH-19021, 
SH-19027 and SHA-035 decrease cell viability, and SH-19027 
and SHA-035 induced cell cycle arrest and apoptosis in hu-
man and mouse colorectal cancer cells (Shin et al., 2022). 
In this study, we investigated the anti-cancer effects and ac-

tion mechanisms of homoisoflavane derivatives, especially 
SH-17059 and SH-19021, in human breast cancer cells. We 
identified cell cycle arrest and caspase-independent cell death 
with some clues suggesting ferroptosis. 

MATERIALS AND METHODS

Cell culture
T47D and ZR-75-1 (invasive breast carcinoma) cells were 

maintained in RPMI-1640 (Cytiva, Marlborough, MA, USA) 
with 10% fetal bovine serum (FBS, Cytiva) and 1X Antibiotic-
Antimycotic (Biowest, Riverside, MO, USA) at 37°C under a 
humidified atmosphere of 5% CO2.

Antibodies and chemicals
Synthetic homoisoflavonoid derivatives of cremastranone 

(five homoisoflavanes SH-17059, SH-19021, SH-19026, SH-
19027, and SHA-035, and a homoisoflavanone SH-19017; 
Fig. 1A) were produced as previously described (Shin et 
al., 2022). Dimethyl sulfoxide (DMSO) was purchased from 
Sigma-Aldrich (St. Louis, MO, USA). The anti-c-Myc (#5606) 
monoclonal antibody and anti-CDK1 (#77055) polyclonal anti-
body were purchased from Cell Signaling Technology (Beverly, 
MA, USA). The polyclonal antibodies anti-Cyclin D1 (sc-753), 
anti-p21 (sc-397), and anti-HO-1 (sc-136960) were obtained 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The 
monoclonal antibodies anti-ALAS1 (ab154860) and anti-GPX4 
(ab125066) were purchased from Abcam (Cambridge, UK). 

Cell viability assay
T47D and ZR-75-1 cells (2.5×103 cells/well) were plated in 

96-well culture plates and incubated overnight. Cell viability 
was measured with the water-soluble tetrazolium salt (WST)-
based EZ-Cytox assay kit (DoGen Bio, Seoul, Korea). After 
treating the cells with SH-17059, SH-19017, SH-19021, SH-
19026, SH-19027, or SHA-035 at the specified doses and du-
rations, the WST solution was added to each well. After the 
plates were incubated for 2 h at 37°C, the cell viability was 
measured based on the absorbance at 450 nm using micro-
plate reader (BioTek, Winooski, VT, USA). 

Cell proliferation assay
A cell proliferation ELISA kit (Roche, Basel, Switzerland) 

was used to measure the cell proliferation rate according 
to the manufacturer’s instructions. T47D and ZR-75-1 cells 
(2.5×103 cells/well) were plated in 96-well culture plates and 
incubated overnight. The T47D and ZR-75-1 were treated with 
SH-17059, SH-19021, SH-19027, or SHA-035 at the indicated 
doses for the indicated times, followed by labeling with BrdU 
labeling solution for 2 h at 37°C. After the cells were fixed with 
fixation solution, the cells were incubated with anti-BrdU anti-
body conjugated with peroxidase at room temperature for 90 
min. After the cells were washed, the substrate solution was 
added, and then, the cells were incubated at room tempera-
ture for 30 min. Subsequently, H2SO4 was added to each well, 
and the absorbance at 450 nm with a reference wavelength 
of 690 nm was measured using a microplate reader (BioTek). 

Western blot analysis
Harvested cells were lysed using lysis buffer (pH 8.0, 20 

mM Tris-HCl, 10% glycerol, 137 mM NaCl, 10 mM EDTA, 
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Fig. 1. The cytotoxic effect of homoisoflavane derivatives. (A) Structure of cremastranone and synthetic homoisoflavane derivatives (Shin 
et al., 2022). (B-E) T47D (B, D) and ZR-75-1 (C, E) cells were treated with the indicated doses of SH-17059, SH-19017, SH-19021, SH-
19026, SH-19027, and SHA-035 for the indicated periods. The cell viability of the T47D and ZR-75-1 cells was measured using the WST 
assay. Values are the means ± SD. *p<0.05, **p<0.01, ***p<0.005 vs DMSO control. These are representatives of three independent experi-
ments.
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0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40, phos-
phatase inhibitor, and protease inhibitor cocktail). Samples 
were separated by SDS-polyacrylamide gel electrophoresis 
and transferred to polyvinylidene fluoride (PVDF) membranes 
(Cytiva). The membranes were blocked with 5% skim milk in 
phosphate-buffered saline-Tween-20 (PBS-T; 140 mM NaCl, 
10 mM Na2HPO4, 2.7 mM KCl, 2 mM KH2PO4, and 0.05% 
Tween-20). Proteins were immunoblotted with the appropriate 
primary antibody and then horseradish peroxidase-conjugated 
anti-rabbit or anti-mouse secondary antibodies (Jackson Im-
munoResearch, West Grove, PA, USA). Immunoreactive pro-
teins were detected with ECL solution (ATTO, Tokyo, Japan).

Cell cycle assay
After T47D cells were treated with the DMSO control, SH-

17059, or SH-19021 for 48 h, fixation and permeabilization 
were performed using the BD Cytofix/Cytoperm™ Fixation/
Permeabilization Kit (BD Biosciences, Franklin Lakes, NJ, 
USA) for 20 min at 4°C. The cells were stained with propidium 
iodide (PI)/RNase staining buffer, and then, the fluorescent 
signal was detected by FACS Calibur (BD Biosciences). The 
cell cycle distribution was analyzed using the FCS Express 
program (De Novo Software, Glendale, CA, USA).

Apoptosis assay
Apoptosis was measured with the Annexin-V-FLOUS Stain-

ing Kit (Roche) according to the manufacturer’s instructions. 
T47D cells were treated with DMSO, SH-17059, or SH-19021 
for 48 h. The cells were stained with Annexin V-FITC and PI. 
The fluorescent signal was detected by FACSymphony A3 
(BD Biosciences), and the data were analyzed using the FCS 
Express program.

Measurement of the HO-1 expression levels by FACS
For the detection of the intracellular HO-1 levels, T47D cells 

treated with SH-17059 or SH-19021 at the indicated dose for 
48 h. The cells were fixed and permeabilized by the BD Cy-
tofix/Cytoperm™ Fixation/Permeabilization Kit (BD Bioscienc-
es) for 20 min at 4°C. The cells were incubated with anti-HO-1 
(1:200) antibody for 1 h at 4°C. After washes, the cells were in-
cubated with Alexa Fluor-conjugated goat anti-mouse IgG an-
tibody (1:1,000; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) for 1 h at 4°C. The fluorescent signal was detected by 
NovoCyte® FACS (ACEA Biosciences, San Diego, CA, USA), 
and the data were analyzed using the FCS Express program.

ROS detection
2,7-dichlorodihydroflurescein diacetate (H2DCF-DA) (Mo-

lecular Probes, Eugene, OR, USA) was used to measure the 
intracellular ROS levels. T47D cells were treated with SH-
17059 or SH-19021 at the indicated dose for 48 h. After incu-
bation with 5 μM of H2DCF-DA for 30 min at 37°C, the fluores-
cent signal was detected by NovoCyte® FACS. The ROS level 
was analyzed using the FCS Express program.

Measurement of lipid peroxidation
BODIPY™ 581/591 C11 (Thermo Fisher Scientific, Inc.) 

was used to measure the lipid peroxidation levels. T47D cells 
were treated with SH-17059 and SH-19021 at the indicated 
dose for 48 h. The cells were stained with 2 μM BODIPY™ 
581/591 C11 for 30 min at 37°C. The fluorescent signal was 
detected by NovoCyte® FACS. The lipid peroxidation levels 

were analyzed using the FCS Express program.

Statistics
The results represent the mean ± standard deviation (SD) 

from at least three independent experiments. Statistical sig-
nificance of the differences between two sample groups was 
evaluated using Student’s t-test. p<0.05 was considered stati-
cally significant.

RESULTS

The homoisoflavane derivatives have cytotoxicity in 
human breast cancer cells

To investigate the cytotoxic effect of the homoisoflavane 
derivatives in breast cancer cells, we measured cell viability 
of human breast cancer cells, T47D and ZR-75-1, after treat-
ment with these compounds. The cell viability of both cell lines 
was reduced by the treatment with SH-17059, SH-19021, SH-
19027, and SHA-035 in a time- and dose-dependent manner 
(Fig. 1B, 1C) with higher effect revealed in the T47D cells. In 
contrast, SH-19017 and SH-19026 had no or little effect on the 
T47D and ZR-75-1 cells (Fig. 1D, 1E), which is consistent with 
our previous results in colon cancer cells (Shin et al., 2022). 
These data indicate that SH-17059, SH-19021, SH-19027, 
and SHA-035 have a cytotoxic effect on human breast cancer 
cells. 

The homoisoflavane derivatives decrease cell proliferation 
via inducing cell cycle arrest

Because the cell viability was reduced by these compounds, 
we measured the cell proliferation first. As shown in Fig. 2A 
and 2B, proliferation of the T47D and ZR-75-1 cells was signif-
icantly decreased by the homoisoflavane derivatives. Among 
the four active compounds, here, we focused on SH-17059 
and SH-19021 and investigated their action mechanism us-
ing T47D cells for the next experiments. Because c-Myc and 
cyclin D1 are considered as proliferation markers (Motokura 
and Arnold, 1993; Dang, 2013), we measured their expression 
levels using western blot analysis. SH-17059 and SH-19021 
decreased the expression level of c-Myc as expected (Fig. 2C 
left panel) but increased the expression level of cyclin D1 (Fig. 
2C right panel). 

Because SH-17059 and SH-19021 reduced cell prolifera-
tion, we next identified their effect on cell cycle by flow cy-
tometry analysis. SH-17059 and SH-19021 increased the cell 
population in the G2/M phase compared to the DMSO control 
(Fig. 2D). CDK1 has a role as an inducer of G2/M phase pro-
gression, and p21 inhibits the expression and activity of CDK1 
(Vermeulen et al., 2003; Matthews et al., 2022). Thus, we ana-
lyzed the expression levels of CDK1 and p21 as G2/M phase 
protein markers using western blot analysis. The CDK1 ex-
pression was reduced whereas p21 expression was increased 
by the SH-17059 and SH-19021 treatment (Fig. 2E). There-
fore, these results suggest that the cell cycle arrest induced by 
SH-17059 and SH-19021 contributes to the reduced viability 
and proliferation in human breast cancer cells. 

SH-17059 and SH-19021 induced caspase-independent 
cell death in T47D cells

In our previous study, we identified that homoisoflavane 
derivatives induced apoptosis in colorectal cancer cells (Shin 

l 
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et al., 2022). In apoptotic cells, the exposure of phosphatidyl-
serine (PS) on the outer plasma membrane is a main feature, 
which result in phagocytosis (Fadok et al., 1992). As shown in 
Fig. 3A, treatment of T47D cells with SH-17059 or SH-19021 
significantly increased annexin V-positive cells compared to 
the DMSO controls. Because apoptosis is initiated by the 
activation of caspases (Van Cruchten and Van Den Broeck, 
2002), we investigated caspase 3, 8, 9 and 10 activation after 
treatment with SH-17059 or SH-19021. However, there was 

no change in the caspase activity (Fig. 3B). In addition, pre-
treatment with Z-VAD-FMK, a pan-caspase inhibitor, did not 
affect the cell viability (Fig. 3C). Taken together, these results 
indicate that SH-17059 and SH-19021 induced the cell death 
of breast cancer cells, but it was not a caspase-dependent 
apoptosis.
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Heme was downregulated by SH-17059 and SH-19021 in 
T47D cells

Cremastranone-derived homoisoflavonoids were previous-
ly reported to bind with FECH and inhibit its activity (Basavara-
jappa et al., 2017). FECH, also known as heme synthase, is 
a terminal enzyme of heme synthesis. Thus, we hypothesized 

that SH-17059 and SH-19021 might reduce heme synthesis. 
To investigate the hypothesis, we checked the expression of 
the heme related proteins, ALAS1 and HO-1. As shown in the 
Fig. 4A and 4B, the expression levels of ALAS1 and HO-1 
proteins were increased in the cells treated with SH-17059 or 
SH-19021. ALAS1 is a key enzyme of heme biosynthesis and 
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regulated by feedback inhibition (Ponka, 1997); therefore, its 
induction implies the downregulation of heme. HO-1 is known 
to degrade heme and induced by various phytochemicals in-
cluding resveratrol and flavonoids (Kikuchi et al., 2005; Fer-
rándiz and Devesa, 2008). Therefore, these results suggest 
that SH-17059 and SH-19021 induce the downregulation of 
heme, and the increased HO-1 expression may result in the 
degradation of heme.

SH-17059 and SH-19021 induced an increase of ROS and 
lipid peroxidation in T47D cells

HO-1 catalyzes heme to biliverdin, CO, and ferrous iron. 
Because iron accumulation may lead to the generation of ROS 
through the Fenton reaction (Dix and Aikens, 1993), we first 
measured the intracellular ROS levels using an intracellular 
ROS sensor, H2DCF-DA. As shown in Fig. 5A, the ROS levels 
were increased by SH-17059 and SH-19021 at concentrations 
higher than 0.05 μM. As iron accumulation and iron-mediated 
ROS generation may induce ferroptosis (Dixon et al., 2012), 
we detected the levels of lipid peroxidation, a ferroptosis 
marker, using a lipid peroxidation sensor, BODIPY™ 581/591 
C11. The lipid peroxidation levels were increased in the cells 
treated with SH-17059 or SH-19021 (Fig. 5B). It has been 
reported that iron overload decreases GPX4 expression and 
induces ferroptosis through p53-mediated transcriptional re-
pression of the cystine/glutamate antiporter SLC7A11 (Huang 
et al., 2021). Therefore, we measured the expression levels of 
GPX4 as a ferroptosis marker and found that SH-17059 and 
SH-19021 decreased the expression level of GPX4 in a dose-

dependent manner (Fig. 5C). Taken together, these results 
suggest a possibility that SH-17059 and SH-19021 induces 
ferroptosis in breast cancer cells. 

DISCUSSION

Advances in breast cancer treatment have increased the 
survival rates of breast cancer patients over the past decades. 
However, research on novel chemotherapeutic reagents and 
novel treatment strategies is still needed. Natural homoiso-
flavanone compounds have been isolated from a variety of 
plants (Lin et al., 2014). Cremastranone, one of the homoiso-
flavanones, and its synthetic derivatives have been reported 
to have anti-proliferative and anti-angiogenic activity in endo-
thelial cells (Shim et al., 2004; Lee et al., 2014; Basavarajappa 
et al., 2015). In this study, we demonstrated that synthetic ho-
moisoflavane derivatives of cremastranone have cytotoxicity 
in human breast cancer cells. According to previously reported 
studies, other homoisoflavonoids had cytotoxicity against vari-
ous cancer cell lines including breast cancer cells with IC50 in 
the micromolar range (Nguyen et al., 2006; Yan et al., 2012; 
Zhou et al., 2013). However, homoisoflavane derivatives of 
cremastranone that we used in this study exhibited cytotoxic 
effects at nanomolar concentrations in human breast cancer 
cells. Therefore, these compounds could be used as effective 
anticancer agents by reducing side effects.

As we previously reported, four synthetic homoisoflavanes 
(SH-19027, SHA-035, SH-17059 and SH-19021) exerted an 
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anti-cancer effect in colorectal cancer cells. SH-19027 and 
SHA-035 were reported to possess anti-cancer activity as-
sociated with cell cycle arrest and apoptosis in colon cancer 
cells (Shin et al., 2022). Here, we found that the four com-
pounds have an anti-cancer effect in breast cancer cells as 
well; however, there was partial difference in the mechanisms. 
Based on the detailed study, the other two compounds, SH-
17059 and SH-19021, also induced cell cycle arrest and in-
creased the annexin V-positive cell population; however, the 
cell death was caspase-independent, which is different from 
general apoptosis. Caspase-independent cell death occurs 
in some cell death models, such as ferroptosis, parthanatos, 
lysosome-dependent cell death, and autophagic cell death 
(Fitzwalter and Thorburn, 2015; Galluzzi et al., 2018). Previ-
ously, it was reported that RSL3 (a GPX4 inhibitor)-induced 
ferroptosis is also accompanied by an annexin V-positive cell 
population (Sui et al., 2018). Together with other evidence, we 
conclude that the type of cell death was caspase-independent 
cell death like ferroptosis rather than caspase-dependent 
apoptosis in breast cancer cells. Therefore, homoisoflavane 
derivatives may be used generally in various cancers even 
though the action mechanisms might be partly different de-
pending on the cell types. Whether homoisoflavane deriva-
tives induce caspase-independent cell death also in colon 
cancer cells and whether there are differences in the action 
mechanisms among the four potent homoisoflavane deriva-
tives need further study. 

We observed that homoisoflavane derivatives commonly 
increased the expression of cyclin D1 in colon cancer cells 
(Shin et al., 2022) and breast cancer cells. Although cyclin D1 
is considered as a cell proliferation marker, it is likely that the 
upregulation of cyclin D1 contributes to the increased sensitiv-
ity of the cells to cell death. Ectopic overexpression of cyclin 
D1 induced more apoptosis in breast cancer cells treated with 
the proteasome inhibitor bortezomib (Ishii et al., 2006). Over-
expression of cyclin D1 increased sensitivity to fenretinide-in-
duced apoptosis in breast cancer cells (Pirkmaier et al., 2003). 
Additionally, overexpression of cyclin D1 induced apoptosis in 
the neural cell line N1E-115, and cyclin D1-dependent kinase 
was activated during the neuronal apoptosis (Kranenburg et 
al., 1996). Therefore, the functional role of cyclin D1 in the 
cell death induced by these compounds is another issue to 
pursue.

In breast cancer cells, SH-17059 and SH-19021 increased 
the HO-1 expression which agrees with previous reports that 
HO-1 is induced by several stimuli such as oxidative stress, 
free heme, and phytochemicals including flavonoids (Kikuchi 
et al., 2005; Ferrándiz and Devesa, 2008). Although HO-1 is 
expressed in diverse cancers and related to a poor prognosis 
and immune suppression (Luu Hoang et al., 2021), HO-1 has 
been reported to induce ferroptosis through iron accumulation 
in recent studies (Chiang et al., 2018). Furthermore, it was 
reported that a HO-1 knockdown alleviated the ferroptosis in-
duced by S-dimethylarsino-glutathione (ZIO-101; Darinapar-
sin) treatment in leukemia cells (Xu et al., 2022). Therefore, 
increased expression of HO-1 induced by SH-17059 and SH-
19021 is presumed to increase the heme degradation and iron 
release. Considering that ALAS1 is regulated by feedback in-
hibition (Ponka, 1997), induction of ALAS1 further supports 
heme downregulation. In turn, SH-17059 and SH-19021 in-
duced the generation of reactive oxygen species (ROS) and 
lipid peroxidation, while also decreasing GPX4 expression. 

These findings support our hypothesis that these compounds 
may initiate ferroptosis, which could potentially contribute to 
the anti-cancer effects observed in breast cancer cells, at least 
partially. The mechanism and functional significance of HO-1 
induction in the cremastranone derivative-induced cell death 
have to be further investigated.

In summary, we investigated the anti-cancer effect of syn-
thetic homoisoflavane derivatives of cremastranone in human 
breast cancer cells. Treatment with these compounds de-
creased the cell viability accompanying G2/M phase cell cycle 
arrest and caspase-independent cell death along with ROS 
generation and lipid peroxidation. We believe that these data 
will contribute to the development of novel strategies for can-
cer therapy against breast cancer.
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