DOI QR코드

DOI QR Code

Validation of OpenDrift-Based Drifter Trajectory Prediction Technique for Maritime Search and Rescue

  • Received : 2023.06.14
  • Accepted : 2023.06.27
  • Published : 2023.08.31

Abstract

Due to a recent increase in maritime activities in South Korea, the frequency of maritime distress is escalating and poses a significant threat to lives and property. The aim of this study was to validate a drift trajectory prediction technique to help mitigate the damages caused by maritime distress incidents. In this study, OpenDrift was verified using satellite drifter data from the Korea Hydrographic and Oceanographic Agency. OpenDrift is a Monte-Carlo-based Lagrangian trajectory modeling framework that allows for considering leeway, an important factor in predicting the movement of floating marine objects. The simulation results showed no significant differences in the performance of drift trajectory prediction when considering leeway using four evaluation methods (normalized cumulative Lagrangian separation, root mean squared error, mean absolute error, and Euclidean distance). However, leeway improved the performance in an analysis of location prediction conformance for maritime search and rescue operations. Therefore, the findings of this study suggest that it is important to consider leeway in drift trajectory prediction for effective maritime search and rescue operations. The results could help with future research on drift trajectory prediction of various floating objects, including marine debris, satellite drifters, and sea ice.

Keywords

Acknowledgement

This research was partially supported by the Korea Institute of Marine Science & Technology Promotion (KIMST), which is funded by the Korea Coast Guard (20220463), and by the Korea Evaluation Institute of Industrial Technology (KEIT) grant, which is funded by the Korean government (KCG, MOIS, NFA) [RS-2022-001549812, Development of technology to respond to marine fires and chemical accidents using wearable devices].

References

  1. Allen, A., & Plourde, J. V. (1999). Review of leeway: Field experiments and implementation (Report No. CG-D-08-99). U.S. Coast Guard Research and Development Center. https://apps.dtic.mil/sti/pdfs/ADA366414.pdf
  2. Breivik, O., & Allen, A. A. (2008). An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems, 69(1-2), 99-113. https://doi.org/10.1016/j.jmarsys.2007.02.010
  3. Centurioni, L., Horanyi, A., Cardinali, C., Charpentier, E., & Lumpkin, R. (2017). A global ocean observing system for measuring sea level atmospheric pressure: Effects and impacts on numerical weather prediction. Bulletin of the American Meteorological Society, 98(2), 231-238. https://doi.org/10.1175/BAMS-D-15-00080.1
  4. Cho, K. -H., Li, Y., Wang, H., Park, K. -S., Choi, J. -Y., Shin, K. -I., & Kwon, J. -I. (2014). Development and validation of an operational search and rescue modeling system for the Yellow Sea and the East and South China Seas. Journal of Atmospheric and Oceanic Technology, 31(1), 197-215. https://doi.org/10.1175/JTECH-D-13-00097.1
  5. Dagestad, K. -F., Rohrs, J., Breivik, O., & Adlandsvik, B. (2018). OpenDrift v1.0: A generic framework for trajectory modelling. Geoscientific Model Development, 11(4), 1405-1420. https://doi.org/10.5194/gmd-11-1405-2018
  6. Dominicis, M. D., Pinardi, N., Zodiatis, G., & Archetti, R. (2013). MEDSLIK-II, a Lagrangian marine oil spill model for short-term forecasting - Part 2: Numerical simulations and validations. Geoscientific Model Development Discussions, 6, 1999-2043.
  7. Ha, S. Y., Yoon, H.-S., & Kim, Y.-T. (2022). A study on the prediction of the surface drifter trajectories in the Korean Strait. Journal of Korean Society of Coastal and Ocean Engineers, 34(1), 11-18. https://doi.org/10.9765/KSCOE.2022.34.1.11
  8. Hufford, G. L., & Broida, S. (1974). Determination of small craft leeway (Report No. CGR&DC 39/74). U.S. Coast Guard Research and Development Center.
  9. Kang, S. -Y. (1998). Analysis of drift prediction formula used in the search and rescue mission. Journal of Korean Port Research, 12(2), 373-384.
  10. Kim, G. -D., & Kim, Y. -H. (2018). Improved correction of drifter data using deep neural networks. Journal of Korean Institute of Intelligent Systems, 28(5), 443-449. https://doi.org/10.5391/JKIIS.2018.28.5.443
  11. Kim, T. -Y., & Yoon, H. -S. (2011). Skill assessments for evaluating the performance of the hydrodynamic model. Journal of the Korean Society for Marine Environment & Energy, 14(2), 107-113. https://doi.org/10.7846/JKOSMEE.2011.14.2.107
  12. Korea Coast Guard (KCG). (2022a). 2021 해양경찰 백서 [2021 Coast Guard White Paper]
  13. Korea Coast Guard. (2022b). 2021 해상조난사고 통계연보 [2021 Sstatistical yearbook of maritime distress accidents].
  14. Korea Hydrographic and Oceanographic Agency (KHOA). (2022). 2021 해양조사기술연보 [Yearbook of marine survey].
  15. Lee, C. -J., Kim, G. -D., & Kim, Y. -H. (2017). Performance comparison of machine learning based on neural networks and statistical methods for prediction of drifter movement. Journal of the Korea Convergence Society, 8(10), 45-52. https://doi.org/10.15207/JKCS.2017.8.10.045
  16. Lee, M., Gong, I.-Y., & Kang, C.-G. (1999). Tracking model of drifted ships for search and rescue. Journal of the Korean Society for Marine Environmental Engineering, 2(2), 78-85.
  17. Liu, Y., & Weisberg, R. H. (2011). Evaluation of trajectory modeling in different dynamic regions using normalized cumulative lagrangian separation. Journal of Geophysical Research, 116(C9), C09013. https://doi.org/10.1029/2010JC006837
  18. Lumpkin, R., & Pazos, M. (2007). Measuring surface currents with surface velocity program drifters: the instrument, its data, and some recent results. In A. Griffa, A. D. Kirwan, Jr., A. J. Mariano, T. Ozgokmen, & H. T. Rossby (Eds.), Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics (1st ed, pp 39-67). Cambridge University Press. https://doi.org/10.1017/CBO9780511535901.003
  19. Nam, Y. -W., & Kim, Y. -H. (2018). Prediction of drifter trajectory using evolutionary computation. Discrete Dynamics in Nature and Society, 2018, 1-15. https://doi.org/10.1155/2018/6848745
  20. Park, K. -S., Gang, S. -W., & Gang, S. -K. (1989). 수색구조를 위한 표류치 추정 [Estimation of drift value for search and rescue]. Korea Fisheries Infrastructure Promotion Association, 8, 85-88.
  21. Seo, J. -H. (2021). Prediction of surface drifter trajectory based on feature generation. Journal of Korean Institute of Intelligent Systems, 31(4), 299-304. https://doi.org/10.5391/JKIIS.2021.31.4.299
  22. Tipton, M., McCormack, E., Elliott, G., Cisternelli, M., Allen, A., & Turner, A. C. (2022). Survival time and search time in water: Past, present and future. Journal of Thermal Biology, 110, 103349. https://doi.org/10.1016/j.jtherbio.2022.103349
  23. Yun, J. -H. (2005). Measures to enhance the Korean marine SAR systems. Proceedings of the 2015 Fall Conference of the Korean Society of Marine Environment and Safety, 7-14.
  24. Yun, J.-H. (2020). 해양수색구조(SAR) 관련 기술개발 과제에 대한 고찰 [Reflection on technological development challenges in maritime search and rescue (SAR)]. Korea Institute of Marine Science & Technology Promotion.
  25. Yun, J. -H., Lee, M. -J., Jang, H. -L., & Koh, S. (2001). A study on the improvement of SAR capabilities in Korea-Analysis of marine casualties and leeway field experiment-. Journal of the Korean Society of Marine Environment and Safety, 7(2), 13-22.