DOI QR코드

DOI QR Code

Comparative Study on the Organic Solvent of IrO2-Ionomer Inks used for Spray Coating of Anode for Proton Exchange Membrane Water Electrolysis

  • Hye Young Jung (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Yongseok Jun (Graduate School of Energy and Environment, KU-KIST Green School, Korea University) ;
  • Kwan-Young Lee (Department of Chemical and Biological Engineering, Korea University) ;
  • Hyun S. Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung Ki Cho (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jong Hyun Jang (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2023.03.02
  • Accepted : 2023.04.04
  • Published : 2023.08.31

Abstract

Currently, spray coating has attracted interest in the mass production of anode catalyst layers for proton exchange membrane water electrolysis (PEMWE). The solvent in the spray ink is a critical factor for the catalyst dispersion in ink, the microstructure of the catalyst layer, and the PEMWE performance. Herein, various pure organic solvents were examined as a substitute for conventional isopropanol-deionized water (IPA-DIW) mixture for ink solvent. Among the polar solvents that exhibited better IrO2 dispersion over nonpolar solvents, 2-butanol (2-BuOH) was selected as a suitable candidate. The PEMWE single cells were fabricated using 2-BuOH at various ionomer contents, spray nozzle types, and drying temperatures, and their performance was compared to the cells fabricated using a conventional IPA-DIW mixture. The PEMWE single cells with 2-BuOH solvent showed good performances comparable to the conventional IPA-DIW mixture case and highly durable performances under accelerated degradation tests.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2019M3E6A1063674 and NRF-2021M3D1A2051389), Ministry of Trade, Industry and Energy (2019281010007A), and Korea Institute of Science and Technology (2E31871). This work was also supported by the BK21 FOUR (Fostering Outstanding Universities for Research) Project in 2022.

References

  1. International Energy Agency (IEA), Global Hydrogen Review 2021, IEA, Paris, France, 2021.
  2. W. Hwang and Y.-E. Sung, J. Electrochem. Sci. Technol., 2023, 14(2), 120-130. https://doi.org/10.33961/jecst.2022.00808
  3. A. Lim, M. K. Cho, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, J. H. Jang, and H. S. Park, J. Electrochem. Sci. Techol., 2017, 8(4), 265-273. https://doi.org/10.33961/JECST.2017.8.4.265
  4. K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, and M. Bornstein, Annu. Rev. Chem. Biomol. Eng., 2019, 10, 219-239. https://doi.org/10.1146/annurev-chembioeng-060718-030241
  5. S. E. Hosseini, and M. A. Wahid, Renew. Sustain. Energy Rev., 2016, 57, 850-866. https://doi.org/10.1016/j.rser.2015.12.112
  6. C.-W. Sun and S.-S. Hsiau, J. Electrochem. Sci. Technol., 2018, 9(2), 99-108. https://doi.org/10.33961/JECST.2018.9.2.99
  7. A. Mayyas, M. Ruth, B. Pivovar, G. Bender, and K. Wipke, Manufacturing cost analysis for proton exchange membrane water electrolyzers, National Renewable Energy Laboratory, Golden, CO, United States, 2019, NREL/TP-6A20-72740.
  8. J. Park, Z. Kang, G. Bender, M. Ulsh, and S. A. Mauger, J. Power Sources, 2020, 479, 228819.
  9. A. Steinbach, Low-Cost, High Performance Catalyst Coated Membranes for PEM Water Electrolyzers, 3M Company, Maplewood, MN, United States, 2022, DOE3M-0008425
  10. S. M. Alia, M.-A. Ha, G. C. Anderson, C. Ngo, S. Pylypenko, and R. E. Larsen, J. Electrochem. Soc., 2019, 166(15), F1243-F1252. https://doi.org/10.1149/2.0771915jes
  11. M. Buhler, F. Hegge, P. Holzapfel, M. Bierling, M. Suermann, S. Vierrath, and S. Thiele, J. Mater. Chem. A, 2019, 7(47), 26984-26995. https://doi.org/10.1039/C9TA08396K
  12. S. M. Alia, K. S. Reeves, J. S. Baxter, and D. A. Cullen, J. Electrochem. Soc., 2020, 167, 144512.
  13. P. K. R. Holzapfel, M. Buhler, D. Escalera-Lopez, M. Bierling, F. D. Speck, K. J. J. Mayrhofer, S. Cherevko, C. V. Pham, and S. Thiele, Small, 2020, 16(37), 2003161.
  14. J. Lopata, Z. Kang, J. Young, G. Bender, J. W. Weidner, and S. Shimpalee, J. Electrochem. Soc., 2020, 167, 064507.
  15. B. Mayerhofer, D. McLaughlin, T. Bohm, M. Hegelheimer, D. Seeberger, and S. Thiele, ACS Appl. Energy Mater., 2020, 3(10), 9635-9644. https://doi.org/10.1021/acsaem.0c01127
  16. Y. Jang, C. Seol, S. M. Kim, and S. Jang, Int. J. Hydrog. Energy, 2022, 47(42), 18229-18239. https://doi.org/10.1016/j.ijhydene.2022.04.019
  17. A. Voronova, H.-J. Kim, J. H. Jang, H.-Y. Park, and B. Seo, Int. J. Energy Res., 2022, 46(9), 11867-11878. https://doi.org/10.1002/er.7953
  18. B.-S. Lee, S. H. Ahn, H.-Y. Park, I. Choi, S. J. Yoo, H.-J. Kim, D. Henkensmeier, J. Y. Kim, S. Park, S. W. Nam, K.-Y. Lee, and J. H. Jang, Appl. Catal. B: Environ., 2015, 179, 285-291. https://doi.org/10.1016/j.apcatb.2015.05.027
  19. S. Choe, B.-S. Lee, and J. H. Jang, J. Electrochem. Sci. Technol., 2017, 8(1), 7-14. https://doi.org/10.33961/JECST.2017.8.1.7
  20. S. Choe, B.-S. Lee, M. K. Cho, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park, and J. H. Jang, Appl. Catal. B: Environ., 2018, 226, 289-294. https://doi.org/10.1016/j.apcatb.2017.12.037
  21. A. Lim, J. Kim, H. J. Lee, H.-J. Kim, S.J. Yoo, J. H. Jang, H.-Y. Park, Y.-E. Sung, and H. S. Park, Appl. Catal. B: Environ., 2020, 272, 118955.
  22. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, and E. Budevski, Electrochim. Acta, 2007, 52(12), 3889-3894. https://doi.org/10.1016/j.electacta.2006.11.005
  23. K. E. Ayers, J. N. Renner, N. Danilovic, J. X. Wang, Y. Zhang, R. Maric, and H. Yu, Catal. Today, 2016, 262, 121-132. https://doi.org/10.1016/j.cattod.2015.10.019
  24. A. Laube, A. Hofer, S. Ressel, A. Chica, J. Bachmann, and T. Struckmann, Int. J. Hydrog. Energy, 2021, 46(79), 38972-38982. https://doi.org/10.1016/j.ijhydene.2021.09.153
  25. C. Liu, M. Carmo, G. Bender, A. Everwand, T. Lickert, J. L. Young, T. Smolinka, D. Stolten, and W. Lehnert, Electrochem. Commun., 2018, 97, 96-99. https://doi.org/10.1016/j.elecom.2018.10.021
  26. H.-J. Ban, M. Y. Kim, D. Kim, J. Lim, T. W. Kim, C. Jeong, Y.-A. Kim, and H.-S. Kim, J. Electrochem. Sci. Technol., 2019, 10(1), 22-28.
  27. M. Mandal, A. Valls, N. Gangnus, and M. Secanell, J. Electrochem. Soc., 2018, 165(7), F543-F552. https://doi.org/10.1149/2.1101807jes
  28. G. Yang, S. Yu, Z. Kang, Y. Li, G. Bender, B. S. Pivovar, J. B. Green Jr, D. A. Cullen, and F.-Y. Zhang, Adv. Energy Mater., 2020, 10(16), 1903871.
  29. P. Millet, M. Pineri, and R. Durand, J. Appl. Electrochem., 1989, 19, 162-166. https://doi.org/10.1007/BF01062295
  30. F. Yang, C. Lei, A. Griffith, R. Stone, and C. Mittelsteadt, Plug Power. Inc., Proton exchange membrane water electrolyzer membrane electrode assembly, United States patent US; 2022, US20220243339A1.
  31. S. Mauger, Roll to Roll (R2R) Manufacturing of Electrolysis Electrodes for Low Cost Hydrogen Production, National Renewable Energy Laboratory, Golden, CO, United States, 2022, NREL/TP-5900-83194.
  32. E. B. Creel, K. Tjiptowidjojo, J. A. Lee, K. M. Livingston, P. R. Schunk, N. S. Bell, A. Serov, and D. L. Wood III, J. Colloid Interface Sci., 2022, 610, 474-485. https://doi.org/10.1016/j.jcis.2021.11.047
  33. T. T. Ngo, T. L. Yu, and H.-L. Lin, J. Power Sources, 2013, 225, 293-303. https://doi.org/10.1016/j.jpowsour.2012.10.055
  34. T. V. Cleve, S. Khandavalli, A. Chowdhury, S. Medina, S. Pylypenko, M. Wang, K. L. More, N. Kariuki, D. J. Myers, A. Z. Weber, S. A. Mauger, M. Ulsh, and K. C. Neyerlin, ACS Appl. Energy Mater., 2019, 11(50), 46953-46964. https://doi.org/10.1021/acsami.9b17614
  35. A. Lim, J. S. Lee, S. Lee, S. Y. Lee, H. Kim, S. J. Yoo, J. H. Jang, Y.-E. Sung, and H. S. Park, Appl. Catal. B: Environ., 2021, 297, 120458.
  36. Y. D. Yi and Y. C. Bae, Polymer, 2017, 130, 112-123. https://doi.org/10.1016/j.polymer.2017.09.069
  37. Y.-H. Huang, Y.-H. Hsu, and Y.-T. Pan, ACS Appl. Energy Mater., 2022, 5(3), 2890-2897. https://doi.org/10.1021/acsaem.1c03568
  38. T.-H. Yang, Y.-G. Yoon, G.-G. Park, W.-Y. Lee, and C.-S. Kim, J. Power Sources, 2004, 127(1-2), 230-233. https://doi.org/10.1016/j.jpowsour.2003.09.018
  39. J.-H. Park, M.-S. Shin, and J.-S. Park, Electrochim. Acta, 2021, 391, 138971.
  40. D. R. Joshi and N. Adhikari, J. Pharm. Res. Int., 2019, 28(3), 1-18.
  41. Y. Zhai and J. St-Pierre, Appl. Energy, 2019, 242, 239-247. https://doi.org/10.1016/j.apenergy.2019.03.086
  42. T. Shimizu, E. Nogami, Y. Ito, K. Morikawa, M. Nagane, T. Yamashita, T. Ogawa, F. Kametani, H. Yagi, and N. Hachiya, Neurochem. Res., 2021, 46, 2056-2065. https://doi.org/10.1007/s11064-021-03344-8
  43. C.-Y. Ahn, J. Ahn, S. Y. Kang, O.-H. Kim, D. W. Lee, J. H. Lee, J. G. Shim, C. H. Lee, Y.-H. Cho, and Y.-E. Sung, Sci. Adv., 2020, 6, eaaw0870.
  44. S. Khandavalli, J. H. Park, N. N. Kariuki, S. F. Zaccarine, S. Pylypenko, D. J. Myers, M. Ulsh, and S. A. Mauger, ACS Appl. Mater. Interfaces, 2019, 11(48), 45068-45079. https://doi.org/10.1021/acsami.9b14415
  45. M. B. Salvado, P. Schott, L. Guetaz, M. Gerard, T. David, and Y. Bultel, J. Power Sources, 2021, 482, 228893.
  46. J. Zhang, Y. Pei, W. Zhu, Y. Liu, Y. Yin, Y. Qin, and M. D. Guiver, J. Power Sources, 2021, 484, 229259.
  47. S. H. de Almeida and Y. Kawano, J. Therm. Anal. Calorim., 1999, 58, 569-577. https://doi.org/10.1023/A:1010196226309