DOI QR코드

DOI QR Code

Stretchable Energy Harvester Based on Piezoelectric Composites and Kirigami Electrodes

압전 복합소재와 키리가미 섬유전극을 적용한 스트레쳐블 에너지 하베스팅 소자

  • Boran Kim (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University) ;
  • Dong Yeol Hyeon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kwi-Il Park (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University)
  • 김보란 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 현동열 (한국과학기술원 신소재공학과) ;
  • 박귀일 (경북대학교 신소재공학부 금속신소재공학전공)
  • Received : 2023.06.28
  • Accepted : 2023.07.07
  • Published : 2023.09.01

Abstract

Stretchable piezoelectric energy harvester (S-PEHs) based on composite materials are considered one of the potential candidates for realizing wearable self-powered devices for smart clothing and electronic skin. However, low energy conversion performance and expensive stretchable electrodes are major bottlenecks hindering the development and application of S-PEHs. Here, we fabricated the S-PEH by adopting the piezoelectric composites with enhanced stress transfer properties and kirigami-patterned textile electrodes. The optimum contents of piezoelectric BaTiO3 nanoparticles inside the carbon nanotube/ecoflex composite were selected as 30 wt% considering the trade-off between stretchability and energy harvesting performance of the device. The final S-PEH shows an output voltage and mechanical stability of ~5 V and ~3,000 cycles under repeated 150% of tensile strain, respectively. This work presents a cost-effective and scalable way to fabricate stretchable piezoelectric devices for self-powered wearable electronic systems.

Keywords

Acknowledgement

본 연구는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 지원(No.2021R1A4A2001658 and No. 2022R1A2C1003853)을 받아 수행되었음.

References

  1. T. Kim and I. Park, J. Sens. Sci. Technol., 31, 71 (2022). doi: https://doi.org/10.46670/jsst.2022.31.2.71
  2. N. Anusha, B. P. Kumar, and L. Agarwal, 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP) (IEEE, Vijayawada, India, 2022) p. 1. doi: https://doi.org/10.1109/aisp53593.2022.9760637
  3. P. Sundriyal, M. Sahu, O. Prakash, and S. Bhattacharya, Nano-Energetic Materials (Springer, Singapore, 2019) p. 215. doi: https://doi.org/10.1007/978-981-13-3269-2_10
  4. G. Ferin, T. Hoang, C. Bantignies, H. L. Khanh, E. Flesch, and A. Nguyen-Dinh, Proc. 2015 IEEE International Ultrasonics Symposium (IUS) (IEEE, Taipei, Taiwan, 2015) p. 1. doi: https://doi.org/10.1109/ULTSYM.2015.0534
  5. J. Zhao and Z. You, Sensors, 14, 12497 (2014). doi: https://doi.org/10.3390/s140712497
  6. P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Proc. IEEE, 96, 1457 (2008). doi: https://doi.org/10.1109/jproc.2008.927494
  7. D. Y. Hyeon and K. I. Park, J. Powder Mater, 26, 119 (2019). doi: https://doi.org/10.4150/kpmi.2019.26.2.119
  8. G. T. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, C. K. Jeong, K. I. Park, J. J. Choi, D . K. Kim, J. Ryu, and K. J. Lee, Adv. Energy Mater., 6, 1600237 (2016). doi: https://doi.org/10.1002/aenm.201600237
  9. Z. L. Wang and W. Wu, Angew. Chem. Int. Ed., 51, 11700 (2012). doi: https://doi.org/10.1002/anie.201201656
  10. Z. L. Wang, Adv. Mater., 24, 280 (2012). doi: https://doi.org/10.1002/adma.201102958
  11. Z. L. Wang, Adv. Funct. Mater., 18, 3553 (2018). doi: https://doi.org/10.1002/adfm.200800541
  12. Y. Ding, P. Cai, and Z. Wen, Chem. Soc. Rev., 50, 1495 (2021). doi: https://doi.org/10.1039/d0cs01239d
  13. R. Hamid and M. R. Yuce, Sens. Actuators, A, 257, 198 (2017). doi: https://doi.org/10.1016/j.sna.2017.02.026
  14. Y. Wu, Y. Ma, H. Zheng, and S. Ramakrishna, Mater. Des., 211, 110164 (2021). doi: https://doi.org/10.1016/j.matdes.2021.110164
  15. S. S. Ham, G. J. Lee, D. Y. Hyeon, Y. G. Kim, Y. W. Lim, M. K. Lee, J. J. Park, G. T. Hwang, S. Yi, C. K. Jeong, and K. I. Park, Composites, Part B, 212, 108705 (2021). doi: https://doi.org/10.1016/j.compositesb.2021.108705
  16. J. H. Han, K. I. Park, and C. K. Jeong, Sensors, 19, 1444 (2019). doi: https://doi.org/10.3390/s19061444
  17. K. I. Park, J. Powder Mater, 25, 263 (2018). doi: https://doi.org/10.4150/kpmi.2018.25.3.263
  18. A. Harb, Renewable Energy, 36, 2641 (2011). doi: https://doi.org/10.1016/j.renene.2010.06.014
  19. J. Yu, X. Hou, M. Cui, N. Zhang, S. Zhang, J. He, and X. Chou, Mater. Lett., 269, 127686 (2020). doi: https://doi.org/10.1016/j.matlet.2020.127686
  20. K. I. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, Adv. Mater., 26, 2514 (2014). doi: https://doi.org/10.1002/adma.201305659
  21. S. C. Park, J. H. Lee, Y. G. Kim, and K. I. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 72 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.1.11
  22. J. Hao, W. Li, J. Zhai, and H. Chen, Mater. Sci. Eng., 135, 1 (2019). doi: https://doi.org/10.1016/j.mser.2018.08.001
  23. J. Yu, L. Chen, X. Hou, J. Mu, J. He, W. Geng, X. Qiao, and X. Chou, J. Materiomics, 8, 247 (2022). doi: https://doi.org/10.1016/j.jmat.2021.10.007
  24. L. Lu, W. Ding, J. Liu, and B. Yang, Nano Energy, 78, 105251 (2020). doi: https://doi.org/10.1016/j.nanoen.2020.105251
  25. K. I. Park, C. K. Jeong, N. K. Kim, and K. J. Lee, Nano Convergence, 3, 12 (2016). doi: https://doi.org/10.1186/s40580-016-0072-z
  26. L. Deng, W. Deng, T. Yang, G. Tian, L. Jin, H. Zhang, B. Lan, S. Wang, Y. Ao, B. Wu, and W. Yang, J. Funct. Biomater., 14, 37 (2023). doi: https://doi.org/10.3390/jfb14010037
  27. W. J. Lee, S. Y. Park, H. J. Nam, and S. H. Choa, J. Microelectron. Packag. Soc., 25, 129 (2018). doi: https://doi.org/10.6117/kmeps.2018.25.4.129
  28. M. Amjadi, Y. J. Yoon, and I. Park, Nanotechnology, 26, 375501 (2015). doi: https://doi.org/10.1088/0957-4484/26/37/375501
  29. C. Baek, J. H. Yun, J. E. Wang, C. K. Jeong, K. J. Lee, K. I. Park, and D. K. Kim, Nanoscale, 8, 17632 (2016). doi: https://doi.org/10.1039/c6nr05784e
  30. G. M. Lous, I. A. Cornejo, T. F. McNulty, A. Safari, and S. C. Danforth, J. Am. Ceram. Soc., 83, 124 (2000). doi: https://doi.org/10.1111/j.1151-2916.2000.tb01159.x
  31. V. F. Janas and A. Safari, J. Am. Ceram. Soc., 78, 2945 (1995). doi: https://doi.org/10.1111/j.1151-2916.1995.tb09068.x
  32. C. K. Jeong, K. I. Park, J. H. Son, G. T. Hwang, S. H. Lee, D. Y. Park, H. E. Lee, H. K. Lee, M. Byuna, and K. J. Lee, Energy Environ. Sci., 7, 4035(2014). doi: https://doi.org/10.1039/c4ee02435d
  33. J. H. Bae, S. S. Ham, S. C. Park, and K. I. Park, J. Sens. Sci. Technol., 31, 312 (2022). doi: https://doi.org/10.46670/jsst.2022.31.5.312
  34. S. He, W. Dong, Y. Guo, L. Guan, H. Xiao, and H. Liu, Nano Energy, 59, 745 (2019). doi: https://doi.org/10.1016/j.nanoen.2019.03.025
  35. C. Baek, J. E. Wang, S. Ryu, J. H. Kim, C. K. Jeong, K. I. Park, and D. K. Kim, RSC Adv., 7, 2851 (2017). doi: https://doi.org/10.1039/c6ra26285f
  36. X. L. Chen, Z. Y. Zhao, and K. M. Liew, Adv. Eng. Software, 39, 121 (2008). doi: https://doi.org/10.1016/j.advengsoft.2006.12.004
  37. J. M. Abu-Khalaf, L. Al-Ghussain, and A. Al-Halhouli, Materials, 11, 2377 (2018). doi: https://doi.org/10.3390/ma11122377
  38. Q. Zhang, Y. Gao, and J. Liu, Appl. Phys. A, 116, 1091 (2013). doi: https://doi.org/10.1007/s00339-013-8191-4
  39. J. Lee, S. Chung, H. Song, S. Kim, and Y. Hong, J. Phys. D: Appl. Phys., 46, 105305 (2013). doi: https://doi.org/10.1088/0022-3727/46/10/105305
  40. X. Zhou, K. Parida, O. Halevi, Y. Liu, J. Xiong, S. Magdassi, and P. S. Lee, Nano Energy, 72, 104676 (2020). doi: https://doi.org/10.1016/j.nanoen.2020.104676
  41. H. Zhou, Y. Zhang, Y. Qiu, H. Wu, W. Qin, Y. Liao, Q. Yu, and H. Cheng, Biosens. Bioelectron., 168, 112569 (2020). doi: https://doi.org/10.1016/j.bios.2020.112569
  42. H. Gong, Y. Zhang, J. Quan, and S. Che, Curr. Appl. Phys., 11, 653 (2011). doi: https://doi.org/10.1016/j.cap.2010.10.021