DOI QR코드

DOI QR Code

Covalent Organic Framework Based Composite Separation Membrane: A Review

공유 유기 골격체 기반 복합 분리막 : 고찰

  • Jeong Hwan Shim (Nano Science and Engineering, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 심정환 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.08.17
  • Accepted : 2023.08.23
  • Published : 2023.08.31

Abstract

Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

공유 유기 프레임워크(COF)는 분자 분리, 염료 분리, 가스 분리, 여과 및 담수화를 포함한 다양한 응용 분야에서 가능성을 보여주었습니다. COF를 막에 통합하면 투과성, 선택성 및 안정성이 향상되어 분리 공정이 향상됩니다. 단일 벽 탄소 나노튜브(SWCNT)와 COF를 결합하면 염료 분리에 이상적인 높은 투과성과 안정성을 가진 나노 복합막을 생성합니다. COF를 폴리아미드(PA) 막에 통합하면 합성 계면 전략을 통해 투과성과 선택성이 향상됩니다. 혼합 매트릭스 막(MMM)의 3차원 COF 필러는 CO2/CH4 분리를 향상시켜 바이오가스 업그레이드에 적합합니다. COF와 금속 유기 프레임워크(MOF) 막을 결합한 모든 나노 다공성 복합재(ANC) 막은 투과성-선택성 트레이드오프를 극복하여 가스 투과성을 크게 향상시킵니다. 가상 COF (hypoCOF)를 사용한 계산 시뮬레이션은 CO2 분리 및 H2 정제와 관련하여 우수한 CO2 선택성과 작업 능력을 입증합니다. 박막 복합재(TFC) 및 폴리술폰아미드(PSA) 막에 통합된 COF는 유기 오염물, 염 오염물 및 중금속 이온에 대한 거부 성능을 향상시켜 분리 능력을 향상시킵니다. TpPa-SO3H/PAN 공유 유기 프레임워크 막(COFM)은 대전된 그룹을 활용하여 정전기적 반발을 통해 효율적인 담수화를 가능하게 함으로써 기존의 폴리아미드 막에 비해 우수한 담수화 성능을 보여 이온 및 분자 분리의 잠재력을 제시했습니다. 이러한 연구 결과는 투과성, 선택성 및 안정성을 향상시켜 향상된 분리 공정을 위한 막 기술에서 COF의 잠재력을 강조합니다. 이 검토에서는 분리 공정에 적용된 COF에 대해 논의합니다.

Keywords

References

  1. S. Das, J. Feng, and W. Wang, "Covalent organic frameworks in separation", Annu. Rev. Chem. Biomol. Eng., 11, 131 (2020).
  2. P. J. Waller, F. Gandara, and O. M. Yaghi, "Chemistry of covalent organic frameworks", Acc. Chem. Res., 48, 3053 (2015).
  3. S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, and B. Van Der Bruggen, "Covalent organic frameworks for membrane separation", Chem. Soc. Rev., 48, 2665 (2019).
  4. M. Matsumoto, L. Valentino, G. M. Stiehl, H. B. Balch, A. R. Corcos, F. Wang, D. C. Ralph, B. J. Marinas, and W. R. Dichtel, "Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films", Chem, 4, 308 (2018).
  5. X. Sui, Y. Wang, F. Liu, Z. Yuan, C. Wang, Y. Yu, K. Zhou, K. Goh, and Y. Chen, "The tripartite role of 2D covalent organic frameworks in graphene-based organic solvent nanofiltration membranes", Matter, 4, 2953 (2021).
  6. L. Valentino, M. Matsumoto, W. R. Dichtel, and B. J. Marinas, "Development and performance characterization of a polyimine covalent organic framework thin-film composite nanofiltration membrane", Environ. Sci. Technol., 51, 14352 (2017).
  7. E. Kim and R. Patel, "Recent advances in covalent triazine framework based separation membranes", Membr. J., 31, 184 (2021).
  8. E. Kim and R. Patel, "Recent advances in metal organic framework based thin film nanocomposite membrane for nanofiltration", Membr. J., 31, 35 (2021).
  9. L. Byunghee and P. Rajkumar, "Oil/water separation technology by mxene composite membrane: A review", Membr. J., 31, 304 (2021).
  10. B. P. Biswal, H. D. Chaudhari, R. Banerjee, U. K. Kharul, "Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation", Chem. Eur. J., 22, 4695 (2016).
  11. C. Wang and R. Patel, "Recent advances on ionic liquid based mixed matrix membrane for CO2 separation", Membr. J., 31, 1 (2021).
  12. H. Fan, M. Peng, I. Strauss, A. Mundstock, H. Meng, and J. Caro, "MOF-in-COF molecular sieving membrane for selective hydrogen separation", Nat. Commun., 12, 38 (2021).
  13. H. C. Gulbalkan, Z. P. Haslak, C. Altintas, A. Uzun, and S. Keskin, "Assessing CH4/N2 separation potential of MOFs, COFs, IL/MOF, MOF/polymer, and COF/polymer composites", Chem. Eng. J., 428, 131249 (2022).
  14. H. Jiang, Y. Chen, S. Song, Z. Guo, Z. Zhang, C. Zheng, G. He, H. Wang, H. Wu, T. Huang, Y. Ren, X. Liu, J. Zhang, Y. Yin, Z. Jiang, and M. D. Guiver, "Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation", Chem. Eng. J., 439, 135657 (2022).
  15. A. Knebel and J. Caro, "Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation", Nat. Nanotechnol., 17, 911 (2022).
  16. G. O. Aksu, I. Erucar, Z. P. Haslak, S. Keskin, "Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening", Chem. Eng. J., 427, 131574 (2022).
  17. M. Bu, Y. Feng, Q. Li, Y. Wang, S. Feng, K. Zhang, Y. Jiang, L. Fan, Z. Kang, and D. Sun, "A binary all-nanoporous composite membrane constructed: Via vapor phase transformation for high-permeance gas separation", Inorg. Chem. Front., 8, 5016-5023 (2021). https://doi.org/10.1039/D1QI00847A
  18. S. Das, T. Ben, S. Qiu, and V. Valtchev, "Two-dimensional COF-three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities", ACS Appl. Mater. Interfaces, 12, 52899 (2020).
  19. Y. Yang, K. Goh, P. Weerachanchai, and T. H. Bae, "3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging", J. Membr. Sci., 574, 235 (2019).
  20. A. Chen, H. Guo, J. Zhou, Y. Li, X. He, L. Chen, and Y. Zhang, "Polyacrylonitrile nanofibers coated with covalent organic frameworks for oil/water separation", ACS Appl. Nano Mat., 5, 3925 (2022).
  21. Q. Liang, B. Jiang, N. Yang, L. Zhang, Y. Sun, and L. Zhang, "Superhydrophilic modification of polyvinylidene fluoride membrane via a highly compatible covalent organic framework-COOH/dopamine-integrated hierarchical assembly strategy for oil-water separation", ACS Appl. Mater. Interfaces, 14, 45880 (2022).
  22. Y. Liu, W. Li, C. Yuan, L. Jia, Y. Liu, A. Huang, Y. Cui, "Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation", Angew. Chem. Int. Ed., 61, e202113348 (2022).
  23. L. Chen, C. Zhou, L. Tan, W. Zhou, H. Shen, C. Lu, and L. Dong, "Enhancement of compatibility between covalent organic framework and polyamide membrane via an interfacial bridging method: Toward highly efficient water purification", J. Membr. Sci., 656, 120590 (2022).
  24. A. R. Corcos, G. A. Levato, Z. Jiang, A. M. Evans, A. G. Livingston, B. J. Marinas, and W. R. Dichtel, "Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection", ACS Mater. Lett., 1, 440 (2019).
  25. H. Wang, H. Wang, H. Jiang, A. Sheng, Z. Wei, Y. Li, C. Wu, and H. Li, "Positively charged polysulfonamide nanocomposite membranes incorporating hydrophilic triazine-structured COFs for highly efficient nanofiltration", ACS Appl. Nano Mater., 3, 9329 (2020).
  26. Y. Zheng, J. Shen, J. Yuan, N. A. Khan, X. You, C. Yang, S. Zhang, A. El-Gendi, H. Wu, R. Zhang, and Z. Jiang, "2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination", Desalination, 532, 115753 (2022).