DOI QR코드

DOI QR Code

MXene Based Composite Membrane for Water Purification and Power Generation: A Review

정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰

  • Seohyun Kim (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 김서현 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.07.27
  • Accepted : 2023.08.25
  • Published : 2023.08.31

Abstract

Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

폐수 처리는 담수 공급의 수요를 맞추고 동시에 환경 오염을 제어하기 위한 가장 중요한 기술 중 하나이다. 여러 종류의 증류법과 역삼투 공정과 같은 다양한 기술은 더 높은 에너지 투입을 필요로 한다. 축전식 탈염(CDI) 기술은 전력 소비가 매우 적어 슈퍼커패시터 원리에 기반한 대안으로 떠오르고 있다. 공정의 효율성을 향상시키기 위해 전극 재료를 개선하기 위한 연구가 계속되고 있다. 역전기투석은 가장 일반적으로 사용되는 담수화 기술 및 삼투압 발전기이다. 역전기투석의 효율을 향상시키기 위해 수행된 많은 연구 중, 맥신(MXene)은 이온교환막 및 2차원 나노유체 채널로서 역전기투석의 물리적 및 전기화학적 특성을 향상시킬 수 있는 유망한 방법으로 떠오르고 있다. 맥신은 단독 사용뿐만 아니라 다른 물질들이 맥신과 혼합되어 복합막의 성능을 더욱 향상시킨다. 전처리를 거치거나 Ti3C2Tx, 나피온 등을 포함한 이종구조를 가진 맥신은 각각 최대 담수화 성능 측정 결과를 통해 담수화 산업에서 유망한 재료로 맥신의 잠재력을 입증했다. 역전기투석을 통한 삼투압 발전 산업에서 이온교환막에서 비대칭 나노유체 이온 채널에 맥신을 사용함으로써 최대 삼투압 출력 밀도를 크게 향상시켰으며, 대부분 상용화 기준값인 5 Wm-2를 넘었다. 일정 개수의 단위체를 연결함으로써 매개체의 도움 없이 전자기기에 직접적으로 전력을 공급할 수 있는 수준의 전압이 출력됐다. 본 리뷰에서는 맥신 복합막을 기반으로 한 전기투석 공정의 최근 연구들에 대해 설명한다.

Keywords

References

  1. S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu, J. Bao, B. Pan, and Y. Xie, "Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution", Nano Energy, 47, 512 (2018).
  2. X. Tang, X. Guo, W. Wu, and G. Wang, "2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries", Adv. Energy Mater., 8, 1801897 (2018).
  3. M. A. Ahouei, T. H. Syed, V. Bishop, S. Halacoglu, H. Wang, and W. Wei, "Ti3C2Tx MXene framework materials: Preparation, properties and applications in energy and environment", Catalysis Today, 409, 162 (2023).
  4. B. Meng, G. Liu, Y. Mao, F. Liang, G. Liu, and W. Jin, "Fabrication of surface-charged MXene membrane and its application for water desalination", J. Membr. Sci., 623, 119076 (2021).
  5. B. Zheng, A. Boretti, and S. Castelletto, "Mxene pseudocapacitive electrode material for capacitive deionization", Chem. Eng. J., 435, 134959 (2022).
  6. J. Ma, Y. Cheng, L. Wang, X. Dai, and F. Yu, "Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity", Chem. Eng. J., 384, 123329 (2020).
  7. Q. Li, X. Xu, J. Guo, J. P. Hill, H. Xu, L. Xiang, C. Li, Y. Yamauchi, and Y. Mai, "Two-dimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization", Angew. Chem. Int. Ed., 60, 26528 (2021).
  8. X. Tong, S. Liu, J. Crittenden, and Y. Chen, "Nanofluidic membranes to address the challenges of salinity gradient power harvesting", ACS Nano, 15, 5838 (2021).
  9. W. Xin, L. Jiang, and L. Wen, "Two-dimensional nanofluidic membranes toward harvesting salinity gradient power", Acc. Chem. Res., 54, 4154 (2021).
  10. L. Gao, C. Li, W. Huang, S. Mei, H. Lin, Q. Ou, Y. Zhang, J. Guo, F. Zhang, S. Xu, and H. Zhang, "MXene/polymer membranes: synthesis, properties, and emerging applications", Chem. Mater., 32, 1703 (2020).
  11. P. Das, S. Ganguly, A. Saha, M. Noked, S. Margel, and A. Gedanken, "Carbon-dots-initiated photopolymerization: An in situ synthetic approach for MXene/poly(norepinephrine)/copper hybrid and its application for mitigating water pollution", ACS Appl. Mater. Interfaces, 13, 31038 (2021).
  12. Z. Huang, Q. Zeng, Y. Liu, Y. Xu, R. Li, H. Hong, L. Shen, and H. Lin, "Facile synthesis of 2D TiO2@MXene composite membrane with enhanced separation and antifouling performance", J. Membr. Sci., 640, 119854 (2021).
  13. Y. Kang, T. Hu, Y. Wang, K. He, Z. Wang, Y. Hora, W. Zhao, R. Xu, Y. Chen, Z. Xie, H. Wang, Q. Gu, and X. Zhang, "Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving", Nat. Commun., 14, 4073 (2023).
  14. H. Zou, B. He, P. Kuang, J. Yu, and K. Fan, "Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electro-catalytic oxygen evolution", ACS Appl. Mater. Interfaces, 10, 22311 (2018).
  15. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, "25th anniversary article: MXenes: A new family of two-dimensional materials", Adv. Mater., 26, 992 (2014).
  16. C. E. Ren, K. B. Hatzell, M. Alhabeb, Z. Ling, K. A. Mahmoud, and Y. Gogotsi, "Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes", J. Phys. Chem. Lett., 6, 4026 (2015).
  17. Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, and X. Feng, "Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators", Nat. Commun., 10, 2920 (2019).
  18. G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, and F. Zaviska, "Towards electrochemical water desalination techniques: A review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization", Membr., 10, 96 (2020).
  19. N. E. Mansoor, L. A. Diaz, C. E. Shuck, Y. Gogotsi, T. E. Lister, and D. Estrada, "Removal and recovery of ammonia from simulated wastewater using Ti3C2Tx MXene in flow electrode capacitive deionization", npj Clean Water, 5, 1 (2022).
  20. X. Liu, X. Xu, X. Xuan, W. Xia, G. Feng, S. Zhang, Z.-G. Wu, B. Zhong, X. Guo, K. Xie, and Y. Yamauchi, "Unlocking enhanced capacitive deionization of NaTi2(PO4)3/carbon materials by the yolk-shell design", J. Am. Chem. Soc., 145, 9242 (2023).
  21. Y. Oh, Y. Jeong, S.-J. Han, C.-S. Kim, H. Kim, J.-H. Han, K.-S. Hwang, N. Jeong, J.-S. Park, and S. Chae, "Effects of divalent cations on electrical membrane resistance in reverse electrodialysis for salinity power generation", Ind. Eng. Chem. Res., 57, 15803 (2018).
  22. J. Jang, Y. Kang, K. Kim, S. Kim, M. Son, S. S. Chee, and I. S. Kim, "Concrete-structured Nafion@MXene/Cellulose acetate cation exchange membrane for reverse electrodialysis", J. Membr. Sci., 646, 120239 (2022).
  23. L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei, J. Caro, and H. Wang, "Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting", Angew. Chem. Int. Ed., 59, 8720 (2020).
  24. L. Ding, M. Zheng, D. Xiao, Z. Zhao, J. Xue, S. Zhang, J. Caro, and H. Wang, "Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion", Angew. Chem. Int. Ed., 61, e202206152 (2022).
  25. F. Hashemifar and A. Esfandiar, "Oppositely charged MXene fibers as a highly efficient osmotic power generator from sea and river water", J. Mater. Chem. A, 10, 24915 (2022).
  26. P. Liu, T. Zhou, Y. Teng, L. Fu, Y. Hu, X. Lin, X.Y. Kong, L. Jiang, and L. Wen, "Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion", CCS. Chem., 2, 1325 (2020).
  27. J. Wang, L. Wang, N. Shao, M. He, P. Shang, Z. Cui, S. Liu, N. Jiang, X. Wang, and L. Wang, "Heterogeneous two-dimensional lamellar Ti3C2Tx membrane for osmotic power harvesting", Chem. Eng. J., 452, 139531 (2023).
  28. S. Wang, Z. Wang, Y. Fan, X. Meng, F. Wang, and N. Yang, "Toward explicit anion transport nanochannels for osmotic power energy using positive charged MXene membrane via amination strategy", J. Membr. Sci., 668, 121203 (2023).