DOI QR코드

DOI QR Code

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor

이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구

  • Hye Jeong Son (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Bong Seok Kim (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Ji Min Kwon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yu Bin Kang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang Soo Lee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 손혜정 (금오공과대학교 고분자공학과) ;
  • 김봉석 (금오공과대학교 고분자공학과) ;
  • 권지민 (금오공과대학교 고분자공학과) ;
  • 강유빈 (금오공과대학교 고분자공학과) ;
  • 이창수 (금오공과대학교 고분자공학과)
  • Received : 2023.07.27
  • Accepted : 2023.08.17
  • Published : 2023.08.31

Abstract

This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.

본 연구는 에너지 저장 응용을 위한 PVI-PGMA/LiTFSI 고분자 막 전해질 및 CxNy-C 유연 전극의 합성 및 특성에 관한 연구이다. 이중 기능을 갖는 PVI-PGMA 공중합체는 우수한 이온 전도성을 나타내었으며, PVI-GMA73/LiTFSI200 막 전해질은 1.0 × 10-3 S cm-1의 최고 전도도를 달성하였다. CxNy-C 전극의 전기화학적 성능을 체계적으로 분석하였으며, C3N2-C는 나노와이어와 다면체로 구성된 높은 연결성을 갖는 하이브리드 구조와 이중 Co/Ni 산화물을 포함하여 풍부한 산화환원 활성 부위와 이온 확산을 용이하게 하는 특징으로 인해 958 F g-1의 최고용량 및 최소한의 전하 전달 저항(Rct)을 달성하였다. 흑연 탄소 껍질의 존재는 충전-방전 동안 높은 전기화학적 안정성에 기여하였다. 이러한 결과들은 고성능 에너지 저장 장치인 슈퍼커패시터 및 리튬 이온 전지와 같은 첨단 에너지 저장 장비에 PVI-PGMA/LiTFSI 고분자 막 전해질과 CxNy-C 전극을 활용하는 잠재력을 보여주었으며, 지속 가능하고 고성능의 에너지 저장 기술을 더욱 발전시키는 길을 열어가고 있다.

Keywords

Acknowledgement

This research was supported by Kumoh National Institute of Technology (2022~2023).

References

  1. A. A. Kebede, T. Kalogiannis, J. Van Mierlo, and M. Berecibar, "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integratio", Renew. Sust. Energ. Rev., 159, 112213 (2022).
  2. A. G. Olabi, Q. Abbas, A. Al Makky, and M. A. Abdelkareem, "Supercapacitors as next generation energy storage devices: Properties and applications", Energy, 248, 123617 (2022).
  3. Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, and R. B. Kaner, "Design and mechanisms of asymmetric supercapacitors", Chem. Rev., 118, 9233-9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
  4. K. Sharma, A. Arora, and S. K. Tripathi, "Review of supercapacitors: Materials and devices", Energy Stor. Mater., 21, 801-825 (2019).
  5. D. J. Lee, K. S. Im, K. Y. Ryu, and S. Y. Nam, "Synthesis and characterization of ion exchange particles for application of anion exchange membrane", Membr. J., 33, 137-147 (2023). https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.3.137
  6. S. Assel and R. Patel,, "A Review based on ion separation by ion exchange membrane", Membr. J., 32, 209-217 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.4.209
  7. N. Kumari, N. M. Chivukala, and S. Y. Nam, "Studies of the membrane formation techniques and its correlation with properties and performance: A review", Membr. J., 33, 110-126 (2023). https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.3.110
  8. G. J. Kwak, D. H. Kim, and S. Y. Nam, "Development of pore filled anion exchange membrane using UV polymerization method for anion exchange membrane fuel cell application", Membr. J., 33, 77-86 (2023). https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.2.77
  9. B. Pal, S. Yang, S. Ramesh, V. Thangadurai, and R. Jose, "Electrolyte selection for supercapacitive devices: A critical review", Nanoscale Adv., 1, 3807-3835 (2019). https://doi.org/10.1039/C9NA00374F
  10. A. Balducci, R. Dugas, P.-L. Taberna, P. Simon, D. Plee, M. Mastragostino, and S. Passerini, "High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte", J. Power Sources, 165, 922-927 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.048
  11. X. Liu, D. Wu, H. Wang, and Q. Wang, "Self-recovering tough gel electrolyte with adjustable supercapacitor performance", Adv. Mater., 26, 4370-4375 (2014). https://doi.org/10.1002/adma.201400240
  12. J. K. Jang, C. Youn, and H. B. Park, "Surface modification of poly(tetrafluoroethylene) (PTFE) membranes", Membr. J., 33, 1-12 (2023). https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.1.1
  13. S. J. Moon, H. J. Min, C. S. Lee, D. R. Kang, and J. H. Kim, "Adhesive, free-standing, partially fluorinated comb copolymer electrolyte films for solid flexible supercapacitors", Chem. Eng. J., 429, 132240 (2022).
  14. W. J. Mun, B. Kim, S. J. Moon, and J. H. Kim, "Multifunctional, bicontinuous, flexible comb copolymer electrolyte for solid-state supercapacitors", Chem. Eng. J., 454, 140386 (2023).
  15. H. J. Min, M. S. Park, M. Kang, and J. H. Kim, "Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors", Chem. Eng. J., 412, 127500 (2021).
  16. W. Sun, Z. Xu, C. Qiao, B. Lv, L. Gai, X. Ji, H. Jiang, and L. Liu, "Antifreezing proton zwitterionic hydrogel electrolyte via ionic hopping and grotthuss transport mechanism toward solid supercapacitor working at- 50 C", Adv. Sci., 9, 2201679 (2022).
  17. W. Sun, J. Yang, X. Ji, H. Jiang, L. Gai, X. Li, and L. Liu, "Antifreezing zwitterionic hydrogel electrolyte with high conductivity at subzero temperature for flexible sensor and supercapacitor", SM&T, 32, e00437 (2022).
  18. R. Kahkahni, R. Patel, and J. H. Kim, "Photocatalytic membrane for contaminants degradation: A review", Membr. J., 32, 33-42 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.1.33
  19. H. T. Kwon and K. Eum, "Reviews on post-synthetic modification of metal-organic frameworks membranes", Membr. J., 32, 367-382 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.6.367
  20. C. Hu, R. Ruan, W. Wang, A. Gao, and L. Xu, "Electrochemical grafting of poly(glycidyl methacrylate) on a carbon-fibre surface", RSC Adv., 10, 10599-10605 (2020). https://doi.org/10.1039/D0RA00562B
  21. E. M. Muzammil, A. Khan, and M. C. Stuparu, "Post-polymerization modification reactions of poly (glycidyl methacrylate) s", RSC Adv., 7, 55874-55884 (2017). https://doi.org/10.1039/C7RA11093F
  22. M. Egashira, H. Todo, N. Yoshimoto, and M. Morita, "Lithium ion conduction in ionic liquid-based gel polymer electrolyte", J. Power Sources, 178, 729-735 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.063
  23. T. Yu, S. Li, L. Zhang, F. Li, J. Wang, H. Pan, and D. Zhang, "In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V2CTx MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor", J. Colloid Interface Sci., 629, 546-558 (2023). https://doi.org/10.1016/j.jcis.2022.09.107
  24. P. Cai, T. Liu, L. Zhang, B. Cheng, and J. Yu, "ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors", Appl. Surf. Sci., 504, 144501 (2020).
  25. X. Sun, M. Keywanlu, and R. Tayebee, "Experimental and molecular dynamics simulation study on the delivery of some common drugs by ZIF-67, ZIF-90, and ZIF-8 zeolitic imidazolate frameworks", Appl. Organomet. Chem., 35, e6377 (2021).
  26. E. R. Ezeigwe, L. Dong, J. Wang, L. Wang, W. Yan, and J. Zhang, "MOF-deviated zinc-nickel-cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors", J. Colloid Interface Sci., 574, 140-151 (2020).
  27. Y. Zhang, Z. Jin, H. Yuan, G. Wang, and B. Ma, "Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution", Appl. Surf. Sci., 462, 213-225 (2018). https://doi.org/10.1016/j.apsusc.2018.08.081
  28. A. K. Singh, D. Sarkar, K. Karmakar, K. Mandal, and G. G. Khan, "High-performance supercapacitor electrode based on cobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes", ACS Appl. Mater. Interfaces, 8, 20786-20792 (2016). https://doi.org/10.1021/acsami.6b05933
  29. M. Wang, Y. Feng, Y. Zhang, S. Li, M. Wu, L. Xue, J. Zhao, W. Zhang, M. Ge, and Y. Lai, "Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for High-Performance supercapacitors", Appl. Surf. Sci., 596, 153582 (2022).