DOI QR코드

DOI QR Code

Preparation and Properties of Hollow Fiber Membrane for CO2/H2 Separation

이산화탄소/수소 분리용 중공사형 기체분리막의 제조 및 특성

  • Hyung Chul Koh (Carbon Neutral Maneuver Center, Environmental Technology Division, Korea Testing Laboratory) ;
  • Mi-jin Jeon (Carbon Neutral Maneuver Center, Environmental Technology Division, Korea Testing Laboratory) ;
  • Sang-Chul Jung (Carbon Neutral Maneuver Center, Environmental Technology Division, Korea Testing Laboratory) ;
  • Yong-Woo Jeon (Carbon Neutral Maneuver Center, Environmental Technology Division, Korea Testing Laboratory)
  • 고형철 (한국산업기술시험원 환경기술본부 탄소중립대응센터) ;
  • 전미진 (한국산업기술시험원 환경기술본부 탄소중립대응센터) ;
  • 정상철 (한국산업기술시험원 환경기술본부 탄소중립대응센터) ;
  • 전용우 (한국산업기술시험원 환경기술본부 탄소중립대응센터)
  • Received : 2023.07.03
  • Accepted : 2023.08.28
  • Published : 2023.08.31

Abstract

In this study, a hollow fiber support membrane was prepared by a non-solvent induced phase separation (NIPS) method using a polysulfone (PSf). The prepared hollow fiber support membrane was coated with PDMS and Pebax to prepare a hollow fiber composite membrane. The prepared composite membrane was measured for permeance and selectivity for pure CO2, H2, O2 and N2. Gas separation performance of the module having the highest selectivity (CO2/H2) among the prepared composite membrane modules was measured according to the change in stage cut using simulated gas. The composition of the simulated gas used at this time was 70% CO2 and 30% H2. In the 1 stage experiment, it was possible to obtain values of about 60% of H2 concentration and 12% of H2 recovery. In order to overcome the low H2 concentration and recovery, 2 stage serial test was performed, and through this, it was possible to achieve 70% H2 concentration and 70% recovery. Through this, it was possible to derive a separation process configuration for CO2/H2 separation.

본 연구에서는 중공사형 지지체막을 폴리술폰(polysulfone, PSf) 고분자를 이용하여 비용매 상분리법(non solvent induced phase separation, NIPS)에 의해 제조하였다. 제조된 중공사 지지체막을 PDMS와 Pebax를 코팅하여 중공사형 복합막을 제조하고 CO2, H2, O2 그리고 N2에 대한 순수 투과도(permeance)와 선택도를 측정하였다. 제조된 복합막 모듈 중에서 선택도(CO2/H2)가 가장 높은 모듈을 선정하여 모사가스를 사용하여 스테이지컷(stage cut, SC)의 변화에 따라 분리성능을 측정하였다. 이때 사용된 모사가스는 PSA에서 버려지는 off gas의 농도인 CO2 70% : H2 30%인 것을 사용하였다. 1단 실험에서는 H2 농도 약 60%, H2 회수율 12%의 값을 얻을 수 있었다. 낮은 H2 농도와 회수율을 극복하기 위해 2단 직렬 테스트를 수행하였으며, 이를 통해 H2 농도 약 70%, H2 회수율 70%를 달성할 수 있었으며, 이를 통해 CO2/H2 분리에 대하여 분리 공정 구성을 도출할 수 있었다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국 에너지 기술 평가원의 지원을 받아 수행된 연구임(과제번호 : 20213030040070) 이 논문은 2023년도 정부(환경부)의 재원으로 한국환경산업기술원의 지원을 받아 수행된 연구임(과제번호 : RE202106004)

References

  1. A. A. Bazmi and G. Zahedi, "Sustainable energy systems: role of optimization modeling techniques in power generation and supply-A review", Renew. Sust. Energy Rev., 15, 3480-3500 (2011). https://doi.org/10.1016/j.rser.2011.05.003
  2. N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in environmental protection: A review", Renew. Sust. Energy Rev., 15, 1513-1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037
  3. P. Moriarty and D. Honnery, "What is the global potential for renewable energy?" Renew. Sust. Energy Rev., 16, 244-252 (2012). https://doi.org/10.1016/j.rser.2011.07.151
  4. L. Shao, B. T. Low, T. S. Chuang, and A. R. Greenberg, "Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future", J. Membr. Sci., 327, 18-31 (2009). https://doi.org/10.1016/j.memsci.2008.11.019
  5. B. Barnali, C. Narayan, and N. Swati, "Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst", Cat. Today 207, 28-35 (2013). https://doi.org/10.1016/j.cattod.2012.04.011
  6. A. Boyano, A. M. Marigorta, T. Morosuk, and G. Tsatsaronis, "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production", Energy, 36, 2202-2214 (2011). https://doi.org/10.1016/j.energy.2010.05.020
  7. H. W. Kwon, K. S. Im, J. H. Kim, S. H. Kim, D. H. Kim, and S. Y. Nam, "Preparation and gas permeation characteristics of polyetherimide hollow fiber membrane for the application of hydrogen separation", Membr. J., 31, 456 (2021).
  8. S. Sircar and T. C. Golden, "Purification of hydrogen by pressure swing adsorption", Sep. Sci. Technol., 35, 667 (2000).
  9. W. Liemberger, M. Gross, M. Miltner, and M. Harasek, "Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas", J. Clean. Prod., 167, 896 (2017).
  10. N. Peng, N. Widjojo, P. Sukitpaneenit, M. M. Teoh, G. G. Lipscomb, and T. S. Chung, "Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future", Prog. Polym. Sci., 37, 1401-1424 (2012). https://doi.org/10.1016/j.progpolymsci.2012.01.001
  11. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, and D. R. Paul, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 4729-4761 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  12. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999).
  13. A. J. Erb and D. R. Paul, "Gas sorption and transport in polysulfone", J. Membr. Sci., 8, 11 (1981).
  14. C. Y. Pan, "Gas separation by high-flux, asymmetric hollow fiber membranes", AIChE, 32, 2020 (1986).
  15. Y. C. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung, and D. R. Paul, "The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-A review", Prog. Polym. Sci., 34, 561 (2009).
  16. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002).
  17. Y. C. Xiao and T. S. Chung, "Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture", Energy Environ. Sci., 4, 201 (2011).
  18. W. Qiu, L. Xu, C. C. Chen, D. R. Paul, and W. J. Koros, "Gas separation performance of 6 FDA-based polyimides with different chemical structures", Polymer, 54, 6226 (2013).
  19. S. R. Reijerkerk, R. Kprdama, K. Nijmeijer, and M. Wessling, "Highly hydrophilic, rubbery membranes for CO2 capture and dehydration", Int. J. Greenh. Gas. Con., 5, 26 (2011).
  20. J. Xia, S. Liu, and T. S. Chung, "Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes", Macromolecules, 44, 7727 (2011).
  21. S. J. Kim, C. S. Lee, H. C. Koh, S. Y. Ha, S. Y. Nam, J. W. Rhim, and W. M. Choi, "Solvent resistance and gas permeation property of PEI-PDMS hollow fiber composite membrane for separation and recovery of VOCs", Membr. J., 22, 1 (2012).
  22. F. Wu, L. Li, Z. Xu, S. Tan, and Z. Zhang, "Transport study of pure and mixed gases through PDMS membrane", Chem. Eng. J., 117, 51 (2006).
  23. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, "Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)", J. Polym. Sci. Polym. Phys., 38, 415 (2000).
  24. H. Lin, E. V. Wagner, B. D. Freeman, L. G. Toy, and G. P. Gupta, "Plasticization-enhanced hydrogen purification using polymeric membranes", Science, 311, 639 (2006).
  25. H. Lin and B. D. Freeman, "Gas solubility, diffusivity and permeability in poly(ethylene oxide)", J. Membr. Sci., 239, 105 (2004).
  26. A. Car, C. Stropnik, W. Yave, and K. V. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation", J. Membr. Sci., 307, 88 (2008).
  27. T. K. Carlisle, G. D. Nicodemus, D. L. Gin, and R. D. Noble, "CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membrane as a function of ionic liquid loading and cross-linker content", J. Membr. Sci., 397, 24 (2012).
  28. R. D. Noble and D. L. Gin, "Perspective on ionic liquids and ionic liquid membranes", J. Membr. Sci., 369, 1 (2011).
  29. H. Lin and B. D. Freeman, "Material selection guidelines for membranes that remove CO2 from gas mixtures", J. Mol. Struct., 739, 57 (2005).
  30. S. L. Liu, L Shao, M. L. Chua, C. H. Lau, H. Wang, and S. Quan, "Recent progress in the design of advanced PEO-containing membranes for CO2 removal", Prog. Polym. Sci., 38, 1089 (2013).
  31. S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, and M. Wessling, "Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes", J. Membr. Sci., 352, 126 (2010).
  32. W. Yave, A. Car, and K. V. Peinemann, "Nanostructured membrane material designed for carbon dioxide separation", J. Membr. Sci., 350, 124 (2010).
  33. H. B. Park, J. kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff : The trade-off between membrane permeability and selectivity", Science, 356, 1137 (2017).